הסכום של כל רצף גיאומטרי הוא:
s =
s = sum, = טווח ראשוני, r = יחס משותף, n = טווח מספר …
אנו מקבלים s, a, ו- n, אז …
אז הגבול יהיה
לבדוק…
המונחים הראשונים והשני של רצף גיאומטרי הם בהתאמה הראשון והשלישי במונחים של רצף ליניארי המונח הרביעי של רצף ליניארי הוא 10 ואת הסכום של חמשת הראשונים שלה הוא 60 מצא את חמשת התנאים הראשונים של רצף ליניארי?
{16, 14, 12, 8} רצף גיאומטרי טיפוסי ניתן לייצג כ- c_0a, c_0a ^ 2, cdots, c_0a ^ k ורצף אריתמטי טיפוסי כ- c_0a, c_0a + דלתא, c_0a + 2Delta, cdots, c_0a + kDelta התקשר אל c_0 כאלמנט הראשון עבור הרצף הגאומטרי שיש לנו {(c_0 a ^ 2 = c_0a + 2Delta -> "הראשון והשני של GS הם הראשון והשלישי של LS"), (c_0a + 3Delta = 10- > "המונח הרביעי של הרצף הליניארי הוא 10"), (5c_0a + 10Delta = 60 -> "סכום חמשת הראשונים שלה הוא 60"):} פתרון עבור c_0, a, דלתא אנו מקבלים c_0 = 64/3 , = 3/4, דלתא = -2 וחמשת האלמנטים הראשונים לרצף האריתמטי הם {16, 14, 12, 10, 8}
הסכום של ארבעת המונחים הראשונים של GP הוא 30 וזה של ארבעת המונחים האחרונים הוא 960. אם הראשון ואת המונח האחרון של GP הוא 2 ו 512 בהתאמה, למצוא את היחס המשותף.
2 (2) 2. נניח כי היחס השכיח (CR) של הרופא המדובר הוא r ו- n (th) המונח הוא המונח האחרון. בהתחשב בכך, המונח הראשון של GP הוא 2.: "GP הוא" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2r ^ (n-2), 2r ^ (n-1)}. נתון 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (כוכב ^ 1), ו, 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (כוכב ^ 2). אנחנו גם יודעים שהמונח האחרון הוא 512:. r ^ (n-1) = 512 .................... (כוכב ^ 3). עכשיו, (כוכב ^ 2) rRrr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, כלומר (r ^ (n-1)) / r ^ 3 (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960. : (512) / r ^ 3 (30) = 960 ...... [בגלל, (כוכב ^ 1) & (כוכב ^
המונח הראשון של רצף גיאומטרי הוא 4 ואת מכפיל, או יחס, הוא -2. מהו הסכום של 5 התנאים הראשונים של הרצף?
מונח ראשון = a_1 = 4, יחס נפוץ = r = -2 ומספר מונחים = n = 5 סכום הסדרה הגיאומטרית עד n ns נתון על ידי S_n = (a_1 (1-r ^ n)) (1-r ) כאשר S_n הוא הסכום למונחים n, n הוא מספר מונחים, a_1 הוא המונח הראשון, r הוא היחס הנפוץ. (1) (1 - (-)) 5 (n = 5 ו - r = -2 = 4 (1 -) - / (1 + 2) = (4 (1 + 32)) / 3 = (4 (33)) / 3 = 4 * 11 = 44 ומכאן הסכום 44