פלייר הם דוגמה של מנוף. הידיות ארוכות יותר ממלתעות הצבת. כאשר מסובבים סביב המפרק, הכוח על הידיות מוכפל בפרופורציה כדי להפעיל כוח רב יותר על חפצים במלתעות.
לא רק אתה משתמש צבת לתפוס דברים, אלא גם כדי לסובב אותם. אם האובייקט שאתה תופס הוא בורג, צבת גם לשמש מנוף כאשר אתה משתמש בהם כדי לסובב את הבריח. פלייר לפעול כמו מנוף כאשר הם תופסים על דברים וגם כאשר הם משמשים כדי לסובב דברים.
שאלה # a01f9 + דוגמה
תואר השוואתי הוא מידת התואר שמשנה שם עצם בהשוואה לאותו שם עצם אחר. אזכור כינוי הוא הקשר כי כינוי יש הקדמון שלה. מטרות תארים של תארים הם חיוביים, השוואתיים, ו superlative. תואר חיובי הוא טופס הבסיס של שם התואר: - חם - חדש - מסוכן - שלם תואר השוואתי הוא תואר המתאר (משנה) שם עצם בהשוואה למשהו דומה או זהה: - hotter - חדש יותר - יותר מסוכן - יותר שלם שם תואר מופלג הוא תואר המתאר (משנה) שם עצם לעומת כל האחרים הדומים או אותו: - hottest - החדש - המסוכן ביותר - השלם ביותר הערה: בדרך כלל, שמות תואר עם יותר מברה אחת משתמשים ב'יותר 'ו'כי' ביותר כדי לתאר את ההשוואה והמופתה של שם עצם. PRONOUN REFERENCES אזכור כינוי פירוש
שאלה # c67a6 + דוגמה
אם משוואה מתמטית מתארת כמות פיזיקלית כפונקציה של זמן, הנגזרת של משוואה זו מתארת את שיעור השינוי כפונקציה של זמן. לדוגמה, אם ניתן לתאר את התנועה של מכונית כ: x = vt אז בכל עת (t) אתה יכול להגיד מה את המיקום של המכונית יהיה (x). הנגזרת של x ביחס לזמן היא: x '= v. V זה הוא שיעור השינוי של x. זה חל גם על מקרים שבהם המהירות אינה קבועה. תנועה של קליע מושלך ישר יתואר על ידי: x = v_0t - 1 / 2g t ^ 2 הנגזרת ייתן לך את המהירות כפונקציה של t. x = = v_0 - g t בזמן t = 0 המהירות היא פשוט v_0 מהירות ההתחלה. בשלב מאוחר יותר, כוח הכבידה יהיה כל הזמן יוריד את המהירות עד שהיא הופכת אפס ואז שלילי. אבל זה לא רק משוואות תנועה. אם אתם שוא
שאלה # 53a2b + דוגמה
הגדרה זו של המרחק היא קבועה תחת שינוי של מסגרת אינרציה, ולכן יש משמעות פיזית. החלל מינקובסקי בנוי כחלל בעל 4 ממדים עם קואורדינטות פרמטרים (x_0, x_1, x_2, x_3, x_4), שבו אנו בדרך כלל אומרים x_0 = ct. בלב ליבה של תורת היחסות הפרטית, יש לנו טרנספורמציות לורנץ, שהן טרנספורמציות ממסגרת אינרציה אחת לאחרת שמשאירות את מהירות האור הבלתי משתנה. אני לא אלך לגזירה מלאה של הטרנספורמציות של לורנץ, אם אתה רוצה שאסביר לך את זה, רק תשאלו ואני אעבור לפרטים נוספים. מה שחשוב הוא הבא. כאשר אנו מתבוננים בחלל האוקלידיאני (המרחב שבו יש לנו את ההגדרה הרגילה של אורך שאנו רגילים ל ds ^ 2 = dx_1 ^ 2 + dx_2 ^ 2 + dx_3 ^ 2), יש לנו טרנספורמציות מסוימות