תשובה:
המספרים הריאליים מחולקים למספרים רציונאליים ולא רציונליים.
הסבר:
המספרים הריאליים מחולקים למספרים רציונאליים ולא רציונליים.
מספרים רציונליים מוגדרים כאלו שניתן לכתוב כ RATIO - ומכאן השם, כלומר הם יכולים להיות כתובים כשבריר
כפי ש
מספרים לא רציונליים הם ספרות עשרוניות חד פעמיות אינסופיות כגון
המספר הגדול ביותר של שני מספרים הוא 10 פחות מכפליים. אם הסכום של שני מספרים הוא 38, מה הם שני מספרים?
המספר הקטן ביותר הוא 16 ואת הגדול ביותר הוא 22. להיות x הקטן ביותר של שני מספרים, הבעיה ניתן לסכם עם המשוואה הבאה: (2x-10) + x = 38 rightarrow 3x-10 = 38 rightarrow 3x = 48 rightarrow x = 48/3 = 16 לכן המספר הקטן ביותר = 16 המספר הגדול ביותר = 38-16 = 22
תוצר של שני מספרים שלמים רצופים הוא 24. מצא את שני מספרים שלמים. תשובה בצורת נקודות מותאמות עם הנמוך ביותר של שני מספרים שלמים. תשובה?
שני המספרים השלמים ברציפות: (4,6) או (-6, -4) תן, צבע (אדום) (n ו- n-2 להיות שני מספרים שלמים רצופים, שבו צבע (אדום) (n inZZ מוצר של n ו n-2 הוא 24 n = n = 2 = = = n = 2-2n-24 = 0 כעת, [(-6) + 4 = -2 ו- (-6) xx4 = -24]: .n ^ N (6) n = 6 = 0: n (6) (n + 4) = 0: n = 6 = 0 או n + 4 = 0 = ל [n inZZ] => צבע (אדום) (n = 6 או n = -4 (i) צבע (אדום) (n = 6) => צבע (אדום) (n-2) = 6-2 = צבע = אדום) (4) אז, שני מספרים שלמים רצופים: (4,6) (ii)) צבע (אדום) (n = -4) => צבע (אדום) (n-2) = -4 = = צבע (אדום) (- 6) אז, שני מספרים שלמים רצופים גם: (- 6, -4)
תוצר של שני מספרים שלמים עוקבים הוא 29 פחות מ 8 פעמים הסכום שלהם. מצא את שני מספרים שלמים. תשובה בצורת נקודות מותאמות עם הנמוך ביותר של שני מספרים שלמים הראשון?
(X, 2) = 8 (x + x 2) - 29 (x, x) : x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 או 1 עכשיו, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. המספרים הם (13, 15). מקרה II: x = 1:. x + 2 = 1 + 2 = 3:. המספרים הם (1, 3). לפיכך, כפי שקיימים כאן שני מקרים; זוג המספרים יכול להיות גם (13, 15) או (1, 3).