תשובה:
Orthocenter של המשולש הוא ב
הסבר:
Orthocenter היא הנקודה שבה שלושת "altitudes" של משולש להיפגש. "גובה" הוא קו העובר דרך קודקוד (נקודת פינה) והוא בזווית ישרה אל הצד הנגדי.
שיפוע
שיפוע של מאונך
משוואת הקו
שיפוע
שיפוע של מאונך
משוואת הקו
פתרון משוואה (1) ו (2) נקבל נקודת הצטלבות שלהם, אשר
הוא המרכז. הוספת משוואה) 1 (ו) 2 (נקבל,
Orthocenter של המשולש הוא ב
מהו orthocenter של משולש עם פינות ב (1, 2), (5, 6), ו (4, 6) #?
אורטוצנטר של המשולש הוא: (1,9) תן, משולש ABC להיות משולש עם פינות A (1,2), B (5,6) ו C (4,6) תן, בר (AL), בר (BM) ואת בר (CN) להיות altitudes בצדדים בר (BC), בר (AC) andbar (AB) בהתאמה. תן (x, y) להיות בצומת של שלוש altitudes. שיפוע הבר (AB) = (6-2) / (5-1) = 1 => שיפוע הבר (CN) = 1 [:. גובה] ובר (CN) עובר דרך C (4,6) אז, equn. (x + 4) כלומר צבע (אדום) (x + y = 10 .... (1) עכשיו, מדרון של בר (AC) = (6-2 ) / 4 (3) = שיפוע הבר (BM) = - 3/4 [:.] גובה וגובה (BM) עובר דרך B (5,6) לכן, equn of bar (BM ) 3 x 4 = x = 5 = = 4y = 24 = -3x + 15 כלומר צבע (אדום) (3x + 4y = 39 .... to (2) מ equn (1 ) 3 x + 4 (10-x) = 39 => 3x + 4
מהו orthocenter של משולש עם פינות ב (1, 3), (5, 7), ו (2, 3) #?
אורתוסנטר של משולש ABC הוא H (5,0) תן המשולש להיות ABC עם פינות ב (1,3), B (5,7) ו C (2,3). כך, המדרון של "קו" (AB) = (7-3) / (5-1) = 4/4 = 1 תן, בר (CN) _ | _bar (AB):. השיפוע של "קו" CN = -1 / 1 = -1, והוא עובר דרךC (2,3). : Equn. של "קו" CN, הוא: y-3 = -1 (x-2) = y-3 = -x + 2 כלומר x + y = 5 ... (1) עכשיו, המדרון של "קו" (3-7) / (5-2) = 4/3 תן, בר (AM) _ | _bar (לפנה"ס):. השיפוע של "קו" AM = -1 / (4/3) = - 3/4, והוא עובר דרך a (1,3). : Equn. של "קו" AM, הוא: y-3 = -3 / 4 (x-1) => 4y-12 = -3x + 3 כלומר 3x + 4y = 15 ... (2) הצומת של "קו" CN ו &q
מהו orthocenter של משולש עם פינות ב (1, 3), (5, 7), ו (9, 8) #?
(10 / 3,61 / 3) חזרה על הנקודות: A (1,3) B (5,7) C (9,8) מרכז האורכונטר של המשולש הוא הנקודה שבה קו הגבהים יחסית לכל צד (עובר דרך קודקוד מנוגדים) להיפגש. אז אנחנו רק צריכים את המשוואות של 2 שורות. השיפוע של קו הוא k = (דלתא y) / (דלתא x) ואת המדרון של הקו בניצב הראשון הוא p = -1 / k (כאשר k! 0 = 0). (= 7) = 4/4 = 1 => p_1 = -1 BC => k = (8-7) / (9-5) = 1/4 => p = = 4 משוואה של קו (עובר דרך C) שבו הניח את גובה מאונך ל- AB (y-y_C) = p (x-x_C) => (y-8) = = 1 * (x-9) => (y-y_A) = p (x-x_A) = (y = x + 9 + 8 = y = -x + 17 [1] משוואת הקו (עובר דרך A) y = 3 x = 1 = = y = -4x + 4 + 3 = y = -4x + 7 [2] שילוב משוואות [