תשובה:
מעגל רדיוס
משוואה סטנדרטית היא:
או,
הסבר:
משוואה קרטזית של מעגל עם מרכז
# (x-a) ^ 2 + (y-b) ^ 2 = r ^ 2 #
אם המעגל עובר (0, -14) ואז:
# (0-a) ^ 2 + (-14-b) ^ 2 = r ^ 2 #
# a ^ 2 + (14 + b) ^ 2 = r ^ 2 # ………………………….. 1
אם המעגל עובר (0, -14) ואז:
# (-12-a) ^ 2 + (-14-b) ^ 2 = r ^ 2 #
# (12 + a) ^ 2 + (14 + b) ^ 2 = r ^ 2 # ………………………….. 2
אם המעגל עובר (0,0) ואז:
# (0-a) ^ 2 + (0-b) ^ 2 = r ^ 2 #
# a ^ 2 + b ^ 2 = r ^ 2 # ………………………….. 3
עכשיו יש לנו 3 משוואות ב 3 unknowns
Eq 2 - Eq 1 נותן:
# (12 + a) ^ 2 -a ^ 2 = 0 #
#:. (12 + a) (12 + a +) = 0 #
#:. 12 (12 + 2a) = 0 #
#:. a -6 -6 #
Subs
# 36 + b ^ 2 = r ^ 2 # ………………………….. 4
Subs
# 36 + (14 + b) ^ 2 = 36 + b ^ 2 #
#:. (14 + b) ^ 2 - b ^ 2 = 0 #
#:. (14 + b-b) (14 + b + b) = 0 #
#:. 14 (14 + 2b) = 0 #
#:. b = -7 #
ולבסוף, subs
# 36 + 49 = r ^ 2 #
#:. r ^ 2 = 85 #
#:. r = sqrt (85) #
ולכן המשוואה של המעגל היא
# (x + 6) ^ 2 + (y + 7) ^ 2 = 85 #
אשר מייצג מעגל של רדיוס
אנחנו יכולים להכפיל אם נדרש לקבל:
# x ^ 2 + 12x + 36 + y + 2 + 14y + 49 = 85 #
# x ^ 2 + 12x + y ^ 2 + 14y = 0 #
מהו הצורה הסטנדרטית של המשוואה של מעגל העובר (0,8), (5,3) ו (4,6)?
לקחתי אותך לנקודה שבה אתה אמור להיות מסוגל להשתלט. צבע (אדום) ("ייתכן שיש דרך קלה יותר לעשות את זה") הטריק הוא לתפעל את המשוואות האלה 3 בצורה כזו, כי אתה בסופו של דבר עם משוואה 1 עם 1 לא ידוע. קחו את הצורה הסטנדרטית של (xa) ^ 2 + (yb) ^ 2 = r = 2 תנו נקודה 1 להיות P_1 -> (x_1, y_1) = (0,8) תנו לנקודה 2 להיות P_2 -> (x_2, y_2) = (3) תן נקודה 3 להיות P_3 -> (x_3, y_3) = (4,6) ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ עבור P_1 -> (x_1-a) ^ 2 + (y_1-b) ^ 2 = r ^ 2 (0-a) ^ 2 + (8-b) ^ 2 r = 2 a ^ 2 + 64-16b + b ^ 2 = r ^ 2 ............... משוואה (1) ............ .................................. ...........
מהו הצורה הסטנדרטית של המשוואה של מעגל העובר דרך A (0,1), B (3, -2) ויש לו את מרכז שוכב על הקו y = x-2?
משפחה של מעגלים f (x, y, a) = x ^ 2 + y ^ 2-2ax-2 (a-2) y + 2a-5 = 0, כאשר a הוא הפרמטר עבור המשפחה, על פי בחירתך. ראה את גרף עבור שני חברים = 0 ו = 2. המדרון של הקו נתון הוא 1 ואת המדרון של AB הוא -1. מכאן שהקו הנתון צריך לעבור דרך נקודת האמצע של M (3/2, -1/2) של AB .. וכך, כל נקודה C אחרת (a, b) על הקו הנתון, עם b = a 2 , יכול להיות במרכז המעגל. המשוואה למשפחה זו של מעגלים היא (xa) ^ 2 (y-a + 2) ^ 2 = (AC) ^ 2 = (a-0) ^ 2 + (a-2) -1) ^ 2 = (X + 2) (x + 2) (x + 2) y (2 x ^ 2) + y ^ 2-4x-1) (x ^ 2 + y ^ 2 + 4y-5) = 0x ^ 2 [-12, 12, -6, 6]}
מהו הצורה הסטנדרטית של המשוואה של מעגל עם מרכז של מעגל הוא (15,32) ועובר דרך הנקודה (-18,21)?
(x + 15) ^ 2 + (y-32) ^ 2 = 130 הצורה הסטנדרטית של מעגל המתמקדת ב (a, b) ורדיוס r הוא (xa) ^ 2 + (yb) ^ 2 = r ^ 2 . אז במקרה זה יש לנו את המרכז, אבל אנחנו צריכים למצוא את הרדיוס והוא יכול לעשות זאת על ידי מציאת המרחק מהמרכז לנקודת נתון: d ((- 15,32); (- 18,21)) = sqrt (+) - + 2) 2 + (y-32) ^ 2 = 130 = (+) (+