מהי המשוואה של הקו הנורמלי ל- f (x) = sec4x-cot2x ב- x = pi / 3?

מהי המשוואה של הקו הנורמלי ל- f (x) = sec4x-cot2x ב- x = pi / 3?
Anonim

תשובה:

# (= "= Normal" => y = - (3x) / (8-24sqrt3) + (152sqrt3-120 + 3pi) / (24-72sqrt2) => y ~ ~ 0.089x-1.52 #

הסבר:

הנורמלי הוא הקו האנכי אל המשיק.

#f (x) = sec (4x) -cot (2x) #

#f '(x) = 4sec (4x) tan (3x) + 2csc ^ 2 (2x) #

(4pi) / 3) + 2csc ^ 2 (2pi) / 3) = (8-24sqrt3) / 3 #

עבור רגיל, # m = -1 / (f '(pi / 3)) = - 3 / (8-24sqrt3) #

# (pi / 3) = sec (4pi) / 3) -קוט (2pi) / 3) = (sqrt3-6) / 3 #

# (sqrt3-6) / 3 = -3 / (8-24sqrt3) (pi / 3) + c #

# c = (sqrt3-6) / 3 + pi / (8-24sqrt3) = (152sqrt3-120 + 3pi) / (24-72sqrt2) # #

# (רגיל): y = - (3x) / (8-24sqrt3) + (152sqrt3-120 + 3pi) / (24-72sqrt2); y = 0.089x-1.52 #