תשובה:
הסבר:
אם אתה לומד
.1
אלסיף אתה לומד
.1
תשובה:
התחום של הקשר הוא: {-3, 1, 6}.
הסבר:
התחום של היחס הוא קבוצה של כל המספרים המתרחשים תחילה זוג הורה ביחסים.
ל
סט נקבע לחלוטין על ידי אלמנט שלו - כלומר, על ידי הדברים בקבוצה, ללא קשר לסדר הצגת החזרה, כך להגדיר:
{-3, 1, 6}. אני פשוט בחרתי לכתוב את האלמנטים של התחום בסדר עולה.
דרך אגב
בגלל הקשר יש שני זוגות שונים עם אותו אלמנט הראשון, יחס זה אינו פונקציה.
התחום של f (x) הוא סט של כל הערכים הריאליים למעט 7, ואת התחום של g (x) הוא סט של כל הערכים הריאליים למעט -3. מהו התחום של (g * f) (x)?
כל המספרים האמיתיים למעט 7 ו -3 כאשר אתה להכפיל שתי פונקציות, מה אנחנו עושים? אנו לוקחים את הערך f (x) ומכפילים אותו בערך g (x), כאשר x חייב להיות זהה. עם זאת שתי פונקציות יש מגבלות, 7 ו -3, ולכן המוצר של שתי פונקציות, חייב להיות * הן * הגבלות. בדרך כלל כאשר יש פעולות על פונקציות, אם הפונקציות הקודמות (f (x) ו- g (x)) היו הגבלות, הם נלקחים תמיד כחלק מהגבלה החדשה של הפונקציה החדשה, או פעולתם. אתה יכול גם לדמיין את זה על ידי ביצוע שתי פונקציות רציונליות עם ערכים מוגבלים שונים, ואז להכפיל אותם ולראות איפה הציר מוגבל יהיה.
מהו התחום והטווח של 3x-2 / 5x + 1 ואת התחום ואת טווח ההופכי של הפונקציה?
התחום הוא כל ריאל למעט -1/5 שהוא טווח ההופכי. טווח הוא כל ריאלס למעט 3/5 שהוא התחום של ההופך. f (x) = (3x-2) / (5x + 1) מוגדר וערכים ריאליים עבור כל x למעט -1.5, כך שהוא התחום של F וטווח f = -1 הגדרת y = (3x (5x + 1) (5x + 1) ופתרון עבור x תשואות 5x + y = 3x-2, ולכן 5xy-3x = -y-2, ולכן (5y-3) x = -y-2, = (y - 2) / (5y-3). אנו רואים את זה y! = 3/5. אז טווח f הוא כל ריאל למעט 3/5. זה גם התחום של f ^ -1.
מהו התחום של הפונקציה המשולבת h (x) = f (x) - g (x), אם התחום של f (x) = (4,4.5) ותחום g (x) הוא [4, 4.5 )
התחום הוא D_ {f-g} = (4,4.5). ראה הסבר. (f-g) (x) ניתן לחשב רק עבור x, אשר f ו- g מוגדרים. אז אנחנו יכולים לכתוב את זה: D_ {f-g} = D_fnnD_g כאן יש לנו D_ {f-g} = (4,4.5) nn [4,4.5] = (4,4.5)