איך למצוא את הנגזרת של cos ^ 2 (3x)?

איך למצוא את הנגזרת של cos ^ 2 (3x)?
Anonim

תשובה:

# d (dx) cos ^ 2 (3x) = - 6sin (3x) cos (3x) #

הסבר:

באמצעות הכלל שרשרת, אנחנו יכולים לטפל #cos (3x) # כמשתנה ומבדיל # cos ^ 2 (3x) # ביחס ל #cos (3x) #.

שרשרת שרשרת # (dy) / (dx) = (dy) / (du) * (du) / (dx) #

תן # u = cos (3x) #, לאחר מכן # (du) / (dx) = - 3sin (3x) #

# (dy) / (du) = d / (du) u ^ 2 -> #מאז # cos ^ 2 (3x) = (cos (3x)) ^ 2 = u ^ 2 #

# = 2u = 2cos (3x) #

(3x) = (6x) cos (3x) # (cx)