תשובה:
הסבר:
המוצר הצולב של שני וקטורים מייצר וקטור אורתוגונלי לשני הווקטורים המקוריים. זה יהיה נורמלי למטוס.
מהו וקטור היחידה שהוא אורתוגונלי למישור המכיל (i + j - k) ו- (i - j + k)?
אנו יודעים שאם vec C = vec A × vec B אז vec C הוא ניצב הן vec A ו vec B אז מה שאנחנו צריכים הוא רק כדי למצוא את המוצר לחצות של שני וקטורים נתון. אז (hati + h hat) = = Hatk-hatj-hatk + hati-hatj-i = -2 (Hatk + hatj) אז, וקטור היחידה הוא (-2 (hat + (= 2 + 2 + 2 ^ 2)) = - (Hatk + hatj) / sqrt (2)
מהו וקטור היחידה שהוא אורתוגונלי למישור המכיל את <0, 4, 4> ו- <1, 1, 1>?
התשובה היא = <0,1 / sqrt2, -1 / sqrt2> וקטור זה מאונך ל 2 וקטורים אחרים ניתנת על ידי המוצר לחצות. <0,4,4> x <1,1,1> = (hati, hatj, Hatk), (0,4,4), (1,1,1) = 0,4,4 => 0 = 4 = + = 4 = 0 = 4 = 4 = = = + 16-16 = 0 <1, 1> 0, 4, -4 = 0 + 4-4 = 0 המודול של <0,4, -4> הוא = <0,4, 4 = = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 וקטור היחידה מתקבל על ידי חלוקת הווקטור על ידי המודול = 1 / (4sqrt2) <0,4, -4> = 0,1 / sqrt2, -1 / sqrt2>
מהו וקטור היחידה שהוא אורתוגונלי למישור המכיל (2 - 3 + 2k) ו (3i - 4j + 4k)?
קח את המוצר הצלב של 2 וקטורים v_1 = (-2, -3, 2) ו- v_2 = (3, 4, 4) לחישוב v_3 = v_1 xx v_2 1 / sqrt (501) (-4, 14, 17) V = = (-4, 14, 17) גודל וקטור חדש זה הוא: | v_3 = 4 ^ 2 + 14 ^ 2 + 17 ^ 2 עכשיו כדי למצוא את וקטור היחידה לנרמל את הקטור החדש שלנו u_3 = v_3 / (sqrt (4 ^ 2 + 14 ^ 2 + 17 ^ 2)); = 1 / sqrt (501) (-4, 14, 17)