שאלה # d90f5

שאלה # d90f5
Anonim

תשובה:

#d) f (x) = x ^ 3, c = 3 #

הסבר:

הגדרת נגזרת של פונקציה #f (x) # בנקודה מסוימת # c # ניתן לכתוב:

#lim_ (h-> 0) (f (c + h) -f (c)) / h #

במקרה שלנו, אנחנו יכולים לראות שיש לנו # (3 + h) ^ 3 #, אז אנחנו יכולים לנחש כי הפונקציה # x ^ 3 #, וזה # c = 3 #. אנו יכולים לאמת את ההשערה אם נכתוב #27# כפי ש #3^3#:

(h +> 0) (3 + h) ^ 3-3 ^ 3) / h #

אנחנו רואים שאם # c = 3 #, היינו מקבלים:

#lim_ (h-> 0) (c + h) ^ 3-c ^ 3) / h #

ואנחנו יכולים לראות כי הפונקציה היא רק ערך cubed בשני המקרים, ולכן הפונקציה צריכה להיות #f (x) = x ^ 3 #:

# (#) (h-> 0) (טקסט (/ /)) ^ 3- (טקסט (//)) ^ 3) / h #