תשובה:
דומיין:
טווח:
הסבר:
אתה לא יכול להתחלק על ידי אפס, כלומר המכנה של השבר לא יכול להיות אפס, כך
לכן, התחום של המשוואה הוא
לחלופין, כדי למצוא את התחום והטווח, עיין בגרף:
גרף {1 / (x-3) -10, 10, -5, 5}
כפי שאתה יכול לראות, x לעולם לא שווה 3, יש פער בנקודה זו, ולכן התחום אינו כולל 3 - ויש פער אנכי בטווח של הגרף ב y = 0, ולכן טווח אינו ' t כוללים 0.
אז, שוב, התחום הוא
והטווח הוא
הערה: דרך נוספת למצוא y אשר עשויה או לא מותרת (פתרון עבור x):
הכפל את שני הצדדים על ידי x:
מחלק ב- y:
הוסף 3:
מכיוון שאינך יכול להתחלק באפס,
התחום של f (x) הוא סט של כל הערכים הריאליים למעט 7, ואת התחום של g (x) הוא סט של כל הערכים הריאליים למעט -3. מהו התחום של (g * f) (x)?
כל המספרים האמיתיים למעט 7 ו -3 כאשר אתה להכפיל שתי פונקציות, מה אנחנו עושים? אנו לוקחים את הערך f (x) ומכפילים אותו בערך g (x), כאשר x חייב להיות זהה. עם זאת שתי פונקציות יש מגבלות, 7 ו -3, ולכן המוצר של שתי פונקציות, חייב להיות * הן * הגבלות. בדרך כלל כאשר יש פעולות על פונקציות, אם הפונקציות הקודמות (f (x) ו- g (x)) היו הגבלות, הם נלקחים תמיד כחלק מהגבלה החדשה של הפונקציה החדשה, או פעולתם. אתה יכול גם לדמיין את זה על ידי ביצוע שתי פונקציות רציונליות עם ערכים מוגבלים שונים, ואז להכפיל אותם ולראות איפה הציר מוגבל יהיה.
אפשר שהתחום של f (x) יהיה [-2.3] והטווח יהיה [0,6]. מהו התחום והטווח של f (-x)?
התחום הוא המרווח [-3, 2]. הטווח הוא המרווח [0, 6]. בדיוק כפי שהוא, זה לא פונקציה, שכן התחום שלה הוא רק מספר -2.3, בעוד הטווח שלה הוא מרווח. אבל בהנחה שזו רק שגיאת הקלדה, והתחום בפועל הוא המרווח [-2, 3], זה כדלקמן: תן g (x) = f (-x). מכיוון ש - f מחייב את המשתנה הבלתי תלוי שלו לקחת ערכים רק במרווח [-2, 3], -x (x x) חייב להיות בתוך [-3, 2], שהוא התחום של g. מכיוון ש g מקבל את ערכו באמצעות הפונקציה f, טווחו נשאר זהה, לא משנה מה אנו משתמשים כמשתנה הבלתי תלוי.
מהו התחום והטווח של 3x-2 / 5x + 1 ואת התחום ואת טווח ההופכי של הפונקציה?
התחום הוא כל ריאל למעט -1/5 שהוא טווח ההופכי. טווח הוא כל ריאלס למעט 3/5 שהוא התחום של ההופך. f (x) = (3x-2) / (5x + 1) מוגדר וערכים ריאליים עבור כל x למעט -1.5, כך שהוא התחום של F וטווח f = -1 הגדרת y = (3x (5x + 1) (5x + 1) ופתרון עבור x תשואות 5x + y = 3x-2, ולכן 5xy-3x = -y-2, ולכן (5y-3) x = -y-2, = (y - 2) / (5y-3). אנו רואים את זה y! = 3/5. אז טווח f הוא כל ריאל למעט 3/5. זה גם התחום של f ^ -1.