תשובה:
התחום הוא המרווח
הטווח הוא המרווח
הסבר:
בדיוק כפי שהוא, זה לא פונקציה, שכן התחום שלה הוא רק המספר
תן
מאז
התחום של f (x) הוא סט של כל הערכים הריאליים למעט 7, ואת התחום של g (x) הוא סט של כל הערכים הריאליים למעט -3. מהו התחום של (g * f) (x)?
כל המספרים האמיתיים למעט 7 ו -3 כאשר אתה להכפיל שתי פונקציות, מה אנחנו עושים? אנו לוקחים את הערך f (x) ומכפילים אותו בערך g (x), כאשר x חייב להיות זהה. עם זאת שתי פונקציות יש מגבלות, 7 ו -3, ולכן המוצר של שתי פונקציות, חייב להיות * הן * הגבלות. בדרך כלל כאשר יש פעולות על פונקציות, אם הפונקציות הקודמות (f (x) ו- g (x)) היו הגבלות, הם נלקחים תמיד כחלק מהגבלה החדשה של הפונקציה החדשה, או פעולתם. אתה יכול גם לדמיין את זה על ידי ביצוע שתי פונקציות רציונליות עם ערכים מוגבלים שונים, ואז להכפיל אותם ולראות איפה הציר מוגבל יהיה.
מהו התחום והטווח של 3x-2 / 5x + 1 ואת התחום ואת טווח ההופכי של הפונקציה?
התחום הוא כל ריאל למעט -1/5 שהוא טווח ההופכי. טווח הוא כל ריאלס למעט 3/5 שהוא התחום של ההופך. f (x) = (3x-2) / (5x + 1) מוגדר וערכים ריאליים עבור כל x למעט -1.5, כך שהוא התחום של F וטווח f = -1 הגדרת y = (3x (5x + 1) (5x + 1) ופתרון עבור x תשואות 5x + y = 3x-2, ולכן 5xy-3x = -y-2, ולכן (5y-3) x = -y-2, = (y - 2) / (5y-3). אנו רואים את זה y! = 3/5. אז טווח f הוא כל ריאל למעט 3/5. זה גם התחום של f ^ -1.
מהו התחום של הפונקציה המשולבת h (x) = f (x) - g (x), אם התחום של f (x) = (4,4.5) ותחום g (x) הוא [4, 4.5 )
התחום הוא D_ {f-g} = (4,4.5). ראה הסבר. (f-g) (x) ניתן לחשב רק עבור x, אשר f ו- g מוגדרים. אז אנחנו יכולים לכתוב את זה: D_ {f-g} = D_fnnD_g כאן יש לנו D_ {f-g} = (4,4.5) nn [4,4.5] = (4,4.5)