רדיוס המעגל הוא (7n-21) אינץ '. איך אתה מוצא את היקף המעגל במונחים של n?
Pi (14n-42) כדי למצוא את היקף המעגל, אתה משתמש בנוסחה של C = pi * קוטר או C = 2pi * רדיוס. כדי למצוא את קוטר המעגל, היית מכפיל את הרדיוס על ידי 2. 2 (7n-21) = 14n-42 עכשיו, להכפיל ידי pi: pi (14n-42) או עשרוני ארוך מאוד שאתה יכול לחפש את עצמך אם אתה רוצה תשובה מדויקת.
רדיוס המעגל הגדול גדול פי שניים מרדיוס המעגל הקטן יותר. שטח הדונאט הוא 75 pi. מצא את הרדיוס של המעגל הקטן (הפנימי).?
רדיוס קטן יותר הוא 5 תן r = רדיוס המעגל הפנימי. הרדיוס של המעגל הגדול יותר הוא 2r. מן ההתייחסות אנו מקבלים את המשוואה עבור שטח של annulus: A = pi (R ^ 2-r ^ 2) תחליף 2r עבור R: A = pi ((2r) ^ 2 r (2 = 4) = 4 = 2 = 3 = 3 תחליף תחליף באזור הנתון: 75pi = 3pir = 2 מחלקים את שני הצדדים על ידי 3pi: 25 = r = 2 r = 5
מעגל A יש רדיוס של 2 ומרכז של (6, 5). מעגל B יש רדיוס של 3 ומרכז של (2, 4). אם המעגל B מתורגם על ידי <1, 1>, האם הוא חופף למעגל A? אם לא, מהו המרחק המינימלי בין נקודות בשני המעגלים?
"מעגלים חופפים"> "מה שאנחנו צריכים לעשות כאן הוא להשוות את המרחק (ד)" "בין המרכזים לסך רדיוס" "" אם סכום רדיוס "> ד" אז עיגולים חופפים "" "אם סכום של לאחר מכן, יש לחשב מחדש את הרדי "d" ואז לא חפיפה "" לפני חישוב d אנו דורשים למצוא את המרכז החדש "" של B אחרי התרגום הנתון "" <1,1> (2,4) ל (2 + 1, 4 + 1) ל (3,5) larrcolor (אדום) "מרכז חדש של B" כדי לחשב ד להשתמש "צבע" (כחול) "נוסחת המרחק" d = sqrt (x_2-x_1) ^ 2 + (y_2- y () "2 ()") y () "let" (x_1, y_1) = () (2)