תשובה:
ראה תהליך פתרון בהמשך:
הסבר:
אם אנחנו יכולים לכתוב כל משוואה ליניארית לעבור דרך נקודה זו אז נוכל להשתמש הנוסחה נקודת המדרון.
הצורה של נקודת השיפוע של משוואה לינארית היא:
איפה
מכיוון שאנו כותבים כל שורה אשר עברו דרך משוואה זו אנו יכולים לבחור כל שיפוע להחליף.
אני אבחר במדרון
החלפת המדרון בחרתי ואת הערכים מנקודת הבעיה והחלפה נותן:
או, בצורה ליירט המדרון:
אני יכול גם לבחור מדרון של
או
אנחנו יכולים גם לבחור מדרון של undefined ובמקרה זה יש לנו קו אנכי הולך דרך נקודת עם המשוואה:
אתה יכול לבחור כל המדרון הרצוי להשתמש באותו תהליך.
תנו f להיות פונקציה ליניארית כך f (-1) = 2 ו - f (1) = 4.Find משוואה עבור הפונקציה ליניארית F ולאחר מכן גרף y = f (x) על רשת קואורדינטות?
Y = 3x + 1 כאשר f הוא פונקציה ליניארית, כלומר, f (-1) = - 2 ו- f (1) = 4, משמעות הדבר היא שהיא עוברת (-1, -2) ו- (1,4 ) שים לב שרק שורה אחת יכולה לעבור בין שתי נקודות, ואם הנקודות הן (x_1, y_1) ו- (x_2, y_2), המשוואה היא (x-x_1) / (x_2-x_1) = (y-y_1) / (y - 2 - y_1), ולכן משוואה של קו עובר (-1, -2) ו (- 4) הוא (x - (- 1)) / (1 - (- 1)) = (y - ) או (x + 1) / 2 = (y + 2) / ו 6 הכפלת ב 6 או 3 (x + 1) = y + 2 או y = 3x + 1
להוכיח כי נתון קו נקודה לא על הקו הזה, יש בדיוק קו אחד שעובר דרך נקודה זו מאונך דרך שורה זו? אתה יכול לעשות זאת באופן מתמטי או באמצעות בנייה (היוונים העתיקים)?
ראה למטה. הבה נניח כי הקו נתון הוא AB, הנקודה היא P, אשר לא על AB. עכשיו, נניח, ציירנו פו אנכי על א.ב. אנחנו חייבים להוכיח כי, PO זה הוא הקו היחיד עובר דרך P כי הוא מאונך AB. עכשיו, נשתמש בבנייה. בואו נבנה עוד מחשב מאונך ב- AB מנקודה P עכשיו ההוכחה. יש לנו, OP בניצב א.ב. [אני לא יכול להשתמש בשלט אנכי, איך annyoing] וכן, כמו כן, PC ניצב AB. אז, OP || מחשב. [שניהם perpendiculars באותו קו.] עכשיו שניהם OP ו- PC יש נקודה P משותף והם מקבילים. כלומר, הם צריכים לחפוף. אז, OP ו- PC הם אותו קו. לכן, יש רק קו אחד עובר דרך נקודה P כי הוא ניצב א.ב. מקווה שזה עוזר.
נקודה A היא ב (-2, -8) ונקודה B היא ב (-5, 3). נקודה A מסובבת (3pi) / 2 בכיוון השעון על המקור. מהן הקואורדינטות החדשות של נקודה A ועד כמה השתנה המרחק בין הנקודות A ו- B?
תן קואורדינטות הקוטב הראשונית של A, (r, theta) בהתחשב קואורדינטות קרטזית ראשונית של A, (x_1 = -2, y_1 = -8) אז אנחנו יכולים לכתוב (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) לאחר 3pi / 2 סיבוב בכיוון השעון הקואורדינטות החדשות של A הופכות ל- x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (8) = 8 y_2 = rsin (-3pi / 2 + theta ) = rsin (3pi / 2-theta) = rcostheta = -2 מרחק ראשוני של A מ B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 המרחק הסופי בין המיקום החדש של A ( 8, -2) ו- B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 אז ההבדל = sqrt194-sqrt130 גם להתייעץ http://socratic.org/questions/point-a -is