אקסטרמה המקומית לציית
עכשיו אם
אבל
תוצר של שני מספרים שלמים רצופים הוא 24. מצא את שני מספרים שלמים. תשובה בצורת נקודות מותאמות עם הנמוך ביותר של שני מספרים שלמים. תשובה?
שני המספרים השלמים ברציפות: (4,6) או (-6, -4) תן, צבע (אדום) (n ו- n-2 להיות שני מספרים שלמים רצופים, שבו צבע (אדום) (n inZZ מוצר של n ו n-2 הוא 24 n = n = 2 = = = n = 2-2n-24 = 0 כעת, [(-6) + 4 = -2 ו- (-6) xx4 = -24]: .n ^ N (6) n = 6 = 0: n (6) (n + 4) = 0: n = 6 = 0 או n + 4 = 0 = ל [n inZZ] => צבע (אדום) (n = 6 או n = -4 (i) צבע (אדום) (n = 6) => צבע (אדום) (n-2) = 6-2 = צבע = אדום) (4) אז, שני מספרים שלמים רצופים: (4,6) (ii)) צבע (אדום) (n = -4) => צבע (אדום) (n-2) = -4 = = צבע (אדום) (- 6) אז, שני מספרים שלמים רצופים גם: (- 6, -4)
תוצר של שני מספרים שלמים עוקבים הוא 29 פחות מ 8 פעמים הסכום שלהם. מצא את שני מספרים שלמים. תשובה בצורת נקודות מותאמות עם הנמוך ביותר של שני מספרים שלמים הראשון?
(X, 2) = 8 (x + x 2) - 29 (x, x) : x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 או 1 עכשיו, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. המספרים הם (13, 15). מקרה II: x = 1:. x + 2 = 1 + 2 = 3:. המספרים הם (1, 3). לפיכך, כפי שקיימים כאן שני מקרים; זוג המספרים יכול להיות גם (13, 15) או (1, 3).
סכום של ארבעה מספרים שלמים עוקבים הוא שלושה יותר מ 5 פעמים לפחות של מספרים שלמים, מה הם מספרים שלמים?
N -> {9,11,13,15} צבע (כחול) ("בונים את המשוואות") תן את המונח הראשון מוזר להיות n תן את סך כל התנאים להיות S אז טווח 1 -> n טווח 2> n +2 טווח 3> n + 4 טווח 4-> n + 6 ואז s = 4n + 12 ................................ (1) בהתחשב בכך s = 3 + 5n .................................. 2) '~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ משוואה (1) עד (2) ובכך מסירה את משתנים s 4n + 12 = s = 3 + 5n איסוף כמו מונחים 5n-4n = 12-3 n = 9 '~ ~ ~~~~~~~~~~~~~~~~~~~~~~~ כלומר, המונחים הם: טווח 1-> n-> 9 טווח 2> n + 2> 11 טווח 3> n + 4-> 13 טווח 4-> n + 6> 15 n -> { 9,11,13,15}