מהו התחום והטווח של y = (4x) / (x ^ 2 + x - 12)?

מהו התחום והטווח של y = (4x) / (x ^ 2 + x - 12)?
Anonim

תשובה:

התחום הוא #x in (-oo, -4) uu (-4,3) uu (3, + oo) #. הטווח הוא #y ב- RR #

הסבר:

המכנה חייב להיות #!=0#

לכן, # x ^ 2 + x-12! = 0 #

# (x + 4) (x-3)! = 0 #

#x! = - 4 # ו #x! = 3 #

התחום הוא #x in (-oo, -4) uu (-4,3) uu (3, + oo) #

כדי למצוא את הטווח, פעל באופן הבא

# y = (4x) / (x ^ 2 + x-12) #

#=>#, #y (x ^ 2 + x-12) = 4x #

#=>#, # yx ^ 2 + yx-4x-12y = 0 #

על מנת שלמשוואה זו יהיו פתרונות, המפלה #>=0#

לכן, # דלתא = (y-4) ^ 2-4y * (- 12y) #

# = y ^ 2 + 16-8y + 48y ^ 2 #

# = 49y ^ 2-8y + 16 #

#AA y ב RR, (49y ^ 2-8y + 16)> = 0 #

כפי ש #delta = (- 8) ^ 2-4 * 49 * 16> 0 #

הטווח הוא #y ב- RR #

גרף {(4x) / (x ^ 2 + x-12) -25.66, 25.65, -12.83, 12.84}