תשובה:
כדי למצוא את שורשי המשוואות כמו
הסבר:
בואו נעשה דוגמה.
כדי להשתמש בשיטה של ניוטון, אתה כותב את המשוואה בצורה
חישוב
מכיוון שהשיטה דורשת מאיתנו לבצע את אותו חישוב פעמים רבות, עד שהיא תתכנס, אני ממליץ להשתמש בגיליון אלקטרוני של Excel; את שאר התשובות שלי יכיל הוראות כיצד לעשות זאת.
הזן ניחוש טוב עבור x לתוך תא A1. עבור משוואה זו, אני אכנס 2.
הזן את הפרטים הבאים בתא A2:
A1 (EXP (A1) - A1 ^ 3) / (EXP (A1) - 3 * A1 ^ 2)
שים לב כי הנ"ל היא שפת גליון Excel עבור
העתק את תוכן התא A2 לתוך A3 דרך A10. לאחר רק 3 או 4 recouts, אתה יכול לראות כי השיטה יש converged ב
תשובה:
אנו יכולים להשתמש בתיאור הערך הביניים כדי לראות שלכל זוג יש נקודה אחת לפחות בצומת.
הסבר:
ב
ב
ב
ב
(שים לב ש
שאלה # a01f9 + דוגמה
תואר השוואתי הוא מידת התואר שמשנה שם עצם בהשוואה לאותו שם עצם אחר. אזכור כינוי הוא הקשר כי כינוי יש הקדמון שלה. מטרות תארים של תארים הם חיוביים, השוואתיים, ו superlative. תואר חיובי הוא טופס הבסיס של שם התואר: - חם - חדש - מסוכן - שלם תואר השוואתי הוא תואר המתאר (משנה) שם עצם בהשוואה למשהו דומה או זהה: - hotter - חדש יותר - יותר מסוכן - יותר שלם שם תואר מופלג הוא תואר המתאר (משנה) שם עצם לעומת כל האחרים הדומים או אותו: - hottest - החדש - המסוכן ביותר - השלם ביותר הערה: בדרך כלל, שמות תואר עם יותר מברה אחת משתמשים ב'יותר 'ו'כי' ביותר כדי לתאר את ההשוואה והמופתה של שם עצם. PRONOUN REFERENCES אזכור כינוי פירוש
שאלה # c67a6 + דוגמה
אם משוואה מתמטית מתארת כמות פיזיקלית כפונקציה של זמן, הנגזרת של משוואה זו מתארת את שיעור השינוי כפונקציה של זמן. לדוגמה, אם ניתן לתאר את התנועה של מכונית כ: x = vt אז בכל עת (t) אתה יכול להגיד מה את המיקום של המכונית יהיה (x). הנגזרת של x ביחס לזמן היא: x '= v. V זה הוא שיעור השינוי של x. זה חל גם על מקרים שבהם המהירות אינה קבועה. תנועה של קליע מושלך ישר יתואר על ידי: x = v_0t - 1 / 2g t ^ 2 הנגזרת ייתן לך את המהירות כפונקציה של t. x = = v_0 - g t בזמן t = 0 המהירות היא פשוט v_0 מהירות ההתחלה. בשלב מאוחר יותר, כוח הכבידה יהיה כל הזמן יוריד את המהירות עד שהיא הופכת אפס ואז שלילי. אבל זה לא רק משוואות תנועה. אם אתם שוא
שאלה # 53a2b + דוגמה
הגדרה זו של המרחק היא קבועה תחת שינוי של מסגרת אינרציה, ולכן יש משמעות פיזית. החלל מינקובסקי בנוי כחלל בעל 4 ממדים עם קואורדינטות פרמטרים (x_0, x_1, x_2, x_3, x_4), שבו אנו בדרך כלל אומרים x_0 = ct. בלב ליבה של תורת היחסות הפרטית, יש לנו טרנספורמציות לורנץ, שהן טרנספורמציות ממסגרת אינרציה אחת לאחרת שמשאירות את מהירות האור הבלתי משתנה. אני לא אלך לגזירה מלאה של הטרנספורמציות של לורנץ, אם אתה רוצה שאסביר לך את זה, רק תשאלו ואני אעבור לפרטים נוספים. מה שחשוב הוא הבא. כאשר אנו מתבוננים בחלל האוקלידיאני (המרחב שבו יש לנו את ההגדרה הרגילה של אורך שאנו רגילים ל ds ^ 2 = dx_1 ^ 2 + dx_2 ^ 2 + dx_3 ^ 2), יש לנו טרנספורמציות מסוימות