מהו התחום והטווח של (x ^ 3-8) / (x ^ 2-5x + 6)?

מהו התחום והטווח של (x ^ 3-8) / (x ^ 2-5x + 6)?
Anonim

תשובה:

התחום הוא הערך של כל הערכים הריאליים של x למעט #2# ו #3#

הטווח הוא סט של כל הערכים האמיתיים של # y #.

הסבר:

התחום של פונקציה הוא סט של #איקס# ערכים שעבורם הפונקציה תקפה. הטווח הוא המקביל # y # ערכים.

# (x ^ 3 - 8) / (x ^ 2 - 5x6) # #

# (x-2) (x ^ 2 + 2x +4)) / ((x-3) (x-2) #

לכן יש אסימפטוט אנכי נשלף ב # x = 2 # ועוד אסימפטוט אנכי ב # x = 3 # כי שני ערכים אלה יהפכו את המכנה שווה לאפס.

התחום הוא הערך של כל הערכים הריאליים של x למעט #2# ו #3#

הטווח הוא סט של כל הערכים האמיתיים של # y #.