תשובה:
הסבר:
בואו נכתוב את זה במתמטיקה ראשון:
אנו יכולים להתייחס לכך כאל חישוב חלקי או כחישוב עשרוני.
כמו שבריר: כדי לחלק, להכפיל על ידי הדדי:
כעשרונית, לשנות את המכנה לתוך 1
שאר F פולינום (x) ב- x הם 10 ו -15 בהתאמה כאשר f (x) מחולק על ידי (x-3) ו x-4. למצוא את שארית כאשר f (x) מחולק (x- 3) (4)?
5x-5 = 5 (x-1). נזכיר כי מידת הנותרים פולי. הוא תמיד פחות מזה של פולי מחלק. לכן, כאשר f (x) מחולק על ידי פולי ריבועי. (x-4) (x-3), את שאר הפולי. חייב להיות ליניארי, למשל, (ax + b). אם q (x) הוא מנה פולי. (x-4) (x-3) q (x) + (ax + b) ............ <1> . f (x), כאשר מחולק (x-3) משאיר את השאר 10, rRrr f (3) = 10 .................... [כי, " משפט רמאי "). לאחר מכן, על ידי <1>, 10 = 3a + b ................................ <2 > כמו כן, f (4) = 15, ו- <1> rArr 4a + b = 15 .................... <3>. פתרון <2> ו- <3>, a = 5, b = -5. אלה נותנים לנו, 5x-5 = 5 (x-1) כמו שארית הרצוי!
מה זה 5 מחולק x + 2 + 3x + 2 נוסף על ידי 3 מחולק x + 1? (ראה פרטים על עיצוב?
לשים על מכנה משותף. 5 (/ + 2) (x + 1) (+ 1)) + 3 (x + 1) = / (x + 2) x + 2) (x + 2) (x + 1)) = (+ 3x + 6) / (x + 2) (x + 1) אני מקווה שזה עוזר!
כאשר פולינום מחולק (x + 2), השאר הוא 19. כאשר פולינום זהה מחולק (x-1), השאר הוא 2, איך אתה קובע את שארית כאשר פולינומי מחולק (x + 2) (x-1)?
אנו יודעים כי f (1) = 2 ו - f (-2) = - 19 מן השורש שרידים עכשיו למצוא את שארית של פולינום F (x) כאשר מחולק (x-1) (x + 2) הנותרים יהיה של את הצורה + B, כי זה השאר אחרי חלוקה על ידי ריבועי. כעת אנו יכולים להכפיל את המחלק פעמים את המנה Q ... f (x) = Q (x-1) (x + 2) + Ax + B הבא, הוסף 1 ו -2 עבור x ... f (1) = Q (1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (+ 2 + 2) + A (-2) + B = -2A + B = -19 פתרון שתי משוואות אלה, אנו מקבלים A = 7 ו- B = -5 Remainder = Ax + B = 7x-5