(x + 1) (x + 3) (x + 6) (x + 4) = 72 .. מצא x?

(x + 1) (x + 3) (x + 6) (x + 4) = 72 .. מצא x?
Anonim

תשובה:

# x = 0 #

הסבר:

הבעיה הנתונה

# (x + 1) (x + 3) (x + 6) (x + 4) = 72 #

אתה יכול להשתמש FOIL כדי להרחיב את הבעיה לתוך הכפל של שני פולינומים

#<=>#

# (x ^ 2 + 4x + 3) (x ^ 2 + 10x + 24) = 72 #

#<=>#פישוט נוסף

# x ^ 4 + 10x ^ 3 + 24x ^ 2 + 4x ^ 3 + 10x ^ 2 + 96x + 3x ^ 2 + 30x + 72 = 72 #

יש כאן הרבה מונחים, ואחד יתפתה לשלב כמו מונחים כדי לפשט עוד יותר … אבל יש רק מונח אחד שאינו כולל #איקס# ואת המונח הזה הוא #72#

#therefore x = 0 #

תשובה:

#:. x = 0, x = -7, x = (- 7 + -isqrt23) /2.##

הסבר:

# (x + 1) (x + 3) (x + 6) (x + 4) = 72. #

#:. (x + 1) (x + 6)} {(x + 3) (x + 4)} = 72. #

#:. (x ^ 2 + 7x + 6) (x ^ 2 + 7x 12) = 72. #

#:. (y + 6) (y + 12) = 72, ……… y = x ^ 2 + 7x # #

#:. y = 2 + 18y + 72-72 = 0, כלומר y = 2 + 18y = 0. #

#:. y (y + 18) = 0. #

#:. y = 0, או, y + 18 = 0. #

#:. x ^ 2 + 7x = 0, או, x ^ 2 + 7x + 18 = 0. #

#:. x = 0, או x = - 7 + -sqrt {7 ^ 2-4 (1) (18)} (2 * 1), #

#:. x = 0, x = -7, x = (- 7 + -isqrt23) /2.##

תשובה:

# x_1 = -7 # ו # x_2 = 0 #. מן הראשון, הם # x_3 = (7 + sqrt (23) * i) / 2 # ו # x_4 = (7-sqrt (23) * i) / 2 #.

הסבר:

השתמשתי בזהות של ריבועים.

# (x + 1) * (x + 6) * (x + 3) * (x + 4) = 72 #

# (x ^ 2 + 7x + 6) * (x ^ 2 + 7x 12) = 72 #

# (x ^ 2 + 7x + 9) ^ 2-3 ^ 2 = 72 #

# (x ^ 2 + 7x + 9) ^ 2 = 81 #

# (x ^ 2 + 7x + 9) ^ 2-9 ^ 2 = 0 #

# (x ^ 2 + 7x + 9 + 9) * (x ^ 2 + 7x + 9-9) = 0 #

# (x ^ 2 + 7x + 18) * (x ^ 2 + 7x) = 0 #

# (x ^ 2 + 7x + 18) * x * (x + 7) = 0 #

מכפיל שני ושלישי, שורשי משוואות הם # x_1 = -7 # ו # x_2 = 0 #. מן הראשון, הם # x_3 = (7 + sqrt (23) * i) / 2 # ו # x_4 = (7-sqrt (23) * i) / 2 #.