תשובה:
הראשון:
השני:
הסבר:
ראשית, בואו לכתוב את הרצפים גיאומטריים במשוואה שבה אנחנו יכולים לחבר אותם:
הראשון הוא
ראשון:
אנחנו כבר יודעים שהמונח הראשון הוא
השני:
אתה יכול גם פשוט להכפיל את המונח הראשון (
הראשון עם הקדנציה הראשונה של
השני עם הקדנציה הראשונה של
המונחים הראשונים והשני של רצף גיאומטרי הם בהתאמה הראשון והשלישי במונחים של רצף ליניארי המונח הרביעי של רצף ליניארי הוא 10 ואת הסכום של חמשת הראשונים שלה הוא 60 מצא את חמשת התנאים הראשונים של רצף ליניארי?
{16, 14, 12, 8} רצף גיאומטרי טיפוסי ניתן לייצג כ- c_0a, c_0a ^ 2, cdots, c_0a ^ k ורצף אריתמטי טיפוסי כ- c_0a, c_0a + דלתא, c_0a + 2Delta, cdots, c_0a + kDelta התקשר אל c_0 כאלמנט הראשון עבור הרצף הגאומטרי שיש לנו {(c_0 a ^ 2 = c_0a + 2Delta -> "הראשון והשני של GS הם הראשון והשלישי של LS"), (c_0a + 3Delta = 10- > "המונח הרביעי של הרצף הליניארי הוא 10"), (5c_0a + 10Delta = 60 -> "סכום חמשת הראשונים שלה הוא 60"):} פתרון עבור c_0, a, דלתא אנו מקבלים c_0 = 64/3 , = 3/4, דלתא = -2 וחמשת האלמנטים הראשונים לרצף האריתמטי הם {16, 14, 12, 10, 8}
המונח הראשון של רצף גיאומטרי הוא 200 ואת הסכום של ארבעת המונחים הראשונים הוא 324.8. איך מוצאים את היחס הנפוץ?
הסכום של כל רצף גיאומטרי הוא: s = a (1-r ^ n) / (1-r) s = sum, = טווח ראשוני, r = יחס משותף, n = טווח מספר ... אנו מקבלים s, a, ו- n, כך ... 324.8 = 200 (1-r ^ 4) / (1-r) 1.624 = (1-r ^ 4) / (1-r) 1.624-1.624r = 1-r ^ 4 r = 4-1.624r + .624 = 0 r (r = 4-1.624r + .24) / (4r ^ 3-1.624) (3r ^ 4-.624) / (4r ^ 3-1.624) אנחנו מקבלים .. 39999999999999 אז המגבלה תהיה 4 או 4/10 אז היחס הנפוץ שלך הוא 4/10 לבדוק ... s (4) = 200 (1- (4 / 10) ^ 4)) / (1- (4/10)) = 324.8
כתוב את ארבעת המונחים הראשונים של כל רצף גיאומטרי a1 = 6 ו- r = 1/2?
ראה למטה להלן הכלל שלי: a_n = 6 (1/2) ^ (n-1) a_1 = 6 (1/2) ^ (1-1) = 6 a_2 = 6 (1/2) ^ (2-1) = 3 = a = 6 (1/2) ^ (3-1) = 3/2 a_4 = 6 (1/2) ^ (4-1) = 3/4