תשובה:
Orthocenter של המשולש הוא ב
הסבר:
Orthocenter היא הנקודה שבה שלושת "altitudes" של משולש להיפגש. "גובה" הוא קו העובר דרך קודקוד (נקודת פינה) והוא בזווית ישרה אל הצד הנגדי.
שיפוע
שיפוע של מאונך
משוואת הקו
שיפוע
שיפוע של מאונך
משוואת הקו
פתרון משוואה (1) ו (2) אנו מקבלים נקודת הצטלבות שלהם, המהווה את המרכז.
לשים
Orthocenter של המשולש הוא ב
מהו המרכז של משולש עם פינות ב (1, 3), (6, 2), ו (5, 4)?
(x, y) = (47/9, 46/9) תן: A (1, 3), B (6, 2) ו- C (5, 4) להיות הקודקודים של המשולש ABC: שיפוע של קו דרך נקודות : (x_1, y_1), (x_2, y_2): m = (y_2-y_1) / (x_2-x_1) שיפוע של AB: = (2-3) / (6-1) = - 1/5 שיפוע של מאונך (x-x_1) = m = 5, C (5,4): y-4 = 5 (x-5) y = 5x- 21 שיפוע של BC: = (4-2) / (5-6) = - 2 השיפוע של הקו האנכי הוא 1/2. משוואת הגובה מ- A עד BC: y-3 = 1/2 (x-1) y = (1/2) x + 5/2 הצומת של הגובה המשווה y: 5x-21 = (1/2) x + 5/2 10x-42 = x + 5 9x = 47 x = 47/9 y = 5 * 47 / 9- 21 y = 46/9 כך Orthocenter הוא (x, y) = (47/9, 46/9) כדי לבדוק את התשובה ניתן למצוא את משוואת הגובה מ B ל AC ולמצוא את הצומת של זה עם אחד altitude
מהו המרכז של משולש עם פינות ב (4, 3), (5, 4), ו (2, 8) #?
(40 / 7,30 / 7) היא נקודת החיתוך של גבהים והוא המרכז של המשולש. Orthocenter של משולש הוא נקודת הצומת של כל הגבהים של המשולש. תן A (4,3), B (5,4) ו C (2,8,) הם קודקודים של המשולש. תן לספירה להיות בגובה נמשך מ perpendiclar לפנה"ס לסה"נ להיות בגובה נמשך מ C ב AB. השיפוע של הקו לפני הספירה הוא (8-4) / (2-5) = -4/3:. המדרון של AD הוא -1 / 4 - 3 = 3/4 המשוואה של גובה AD היא y-3 = 3/4 (x-4) או 4y-12 = 3x-12 או 4y-3x = 0 (1 ) עכשיו המדרון של הקו AB הוא (4-3) / (5-4) = 1:. השיפוע של CE הוא -1/1 = -1 משוואת הגובה לסה"נ היא y = 8 = x (x-2) או y + x = 10 (2) פתרון 4y-3x = 0 (1) ו- y + x = 10 (2) נקבל x = 40/7; y = 30/7:
מהו המרכז של משולש עם פינות ב (4, 3), (7, 4), ו (2, 8) #?
אורתוסנטר הוא (64 / 17,46 / 17). תן לנו שם את הפינות של המשולש כמו (4,3), B (7,4) & C (2,8). מן הגיאומטריה, אנו יודעים כי altitudes של טרנגל הם בו זמנית בנקודה הנקראת אורתוסנטר של המשולש. תן pt. H להיות אורתוסנטר של DeltaABC, ו, תן שלושה altds. להיות AD, BE, ו- CF, שבו הנקודות. D, E, F הם הרגליים של אלה altds. על הצדדים לפנה"ס, CA, ו- AB, בהתאמה. אז, כדי להשיג את H, אנחנו צריכים למצוא את eqns. של כל שני altds. ולפתור אותם. אנו בוחרים למצוא את eqns. של AD ו- CF Eqn. של אלטד. AD: AD הוא perp. לפני הספירה, המדרון של BC הוא (8-4) / (2-7) = 4/5, ולכן, המדרון של AD חייב להיות 5/4, עם A (4,3) על AD. לפיכך, eqn. של ה- AD: