תשובה:
ראה תהליך פתרון בהמשך:
הסבר:
אתה צודק כי מהירות קבועה של הרכבת הוא 60mph או, rewritten:
כדי למצוא את הזמן, בתוך שעות ייקח את הרכבת כדי לכסות מרחק מסוים אנו מחלקים את המרחק על ידי מהירות:
* עבור 100 מייל:
* עבור 270 מייל:
עכשיו אתה אמור להיות מסוגל לבצע את אותו תהליך עבור 360 קילומטרים.
יש לך למד את מספר האנשים מחכה בתור בבנק שלך ביום שישי אחר הצהריים ב 3 אחר הצהריים במשך שנים רבות, ויצרו חלוקה הסתברות עבור 0, 1, 2, 3, או 4 אנשים בתור. ההסתברויות הן 0.1, 0.3, 0.4, 0.1 ו- 0.1, בהתאמה. מה ההסתברות שלרוב 3 אנשים עומדים בתור בשעה 3 אחר הצהריים ביום שישי אחר הצהריים?
לכל היותר 3 אנשים בתור יהיו. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0.1 + 0.3 + 0.4 + 0.1 = 0.9 כך P (X <= 3) = 0.9 להיות קל יותר אם להשתמש בכללים מחמאה, כמו שיש לך ערך אחד שאתה לא מעוניין, אז אתה יכול פשוט מינוס זה מן ההסתברות הכוללת. (X = 4) = 1 - 0.1 = 0.9 כך P (X <= 3) = 0.9
יש לך למד את מספר האנשים מחכה בתור בבנק שלך ביום שישי אחר הצהריים ב 3 אחר הצהריים במשך שנים רבות, ויצרו חלוקה הסתברות עבור 0, 1, 2, 3, או 4 אנשים בתור. ההסתברויות הן 0.1, 0.3, 0.4, 0.1 ו- 0.1, בהתאמה. מה ההסתברות שלפחות 3 אנשים עומדים בתור בשעה 3 אחר הצהריים ביום שישי אחר הצהריים?
זהו מצב ... או מצב. אתה יכול להוסיף את ההסתברויות. התנאים הם בלעדיים, כלומר: אתה לא יכול להיות 3 ו 4 אנשים בשורה. ישנם שלושה אנשים או 4 אנשים בתור. אז יש לבדוק את התשובה (אם יש לך זמן בזמן הבדיקה), על ידי חישוב ההסתברות ההפוכה: P (<3) P = (0) + P (1) + P (2) = 0.1 + 0.3 + 0.4 = 0.8 וזה התשובה שלך להוסיף עד 1.0, כפי שהם צריכים.
יש לך למד את מספר האנשים מחכה בתור בבנק שלך ביום שישי אחר הצהריים ב 3 אחר הצהריים במשך שנים רבות, ויצרו חלוקה הסתברות עבור 0, 1, 2, 3, או 4 אנשים בתור. ההסתברויות הן 0.1, 0.3, 0.4, 0.1 ו- 0.1, בהתאמה. מהו המספר הצפוי של אנשים (מתכוון) מחכה בתור בשעה 3 אחר הצהריים ביום שישי אחר הצהריים?
המספר הצפוי במקרה זה יכול להיחשב כממוצע משוקלל. זה הכי טוב הגיע על ידי סיכום ההסתברות של מספר נתון על ידי מספר זה. אז, במקרה זה: 0.1 * 0 + 0.3 * 1 + 0.4 * 2 + 0.1 * 3 + 0.1 * 4 = 1.8