מהי משוואה בצורת נקודת המדרון שעובר (7, 4) ויש לו שיפוע של 6?

מהי משוואה בצורת נקודת המדרון שעובר (7, 4) ויש לו שיפוע של 6?
Anonim

תשובה:

# (y - color (אדום) (4)) = צבע (כחול) (6) (x - color (אדום) (7)) #

הסבר:

נוסחת נקודת השיפוע קובעת: # (y - color (אדום) (y_1)) = צבע (כחול) (m) (x - color (אדום) (x_1)) #

איפה #color (כחול) (m) # הוא המדרון ו #color (אדום) ((x_1, y_1))) # הוא נקודת הקו עובר.

החלפת הערכים מהבעיה נותנת:

# (y - color (אדום) (4)) = צבע (כחול) (6) (x - color (אדום) (7)) #

תשובה:

# m = 6 = (y_2-4) / (x_2-7) #

הסבר:

שיפוע (מדרון) של 6 אומר כי עבור 1 לאורך לך לעלות 6

הערה: אם זה היה -6 אז עבור 1 לאורך לך לרדת 6

נתון נקודה # P_1- (x_1, y_1) = (7,4) #

לאחר מכן, באמצעות מעבר הצבע בחרתי בנקודה הבאה להיות משויכת למשתנים:

# P_2 = (x_2, y_2) #

הדרגתי הוא #m = (שינוי ב- y) / ("שינוי ב- x") "" -> "" m = (y_2-y_1) / (x_2-x_1) #

# m = 6 = (y_2-4) / (x_2-7) #

פורמט זה מתקן גם את x- ליירט ו- y ליירט על ידי אסוציאציה ישירה.