תשובה:
הסבר:
פרבולה היא הנקודה של נקודה הנעה כך שהמרחקים שלה מנקודה נתונה הנקראת מיקוד ומקור נתון הנקרא directrix שווים.
הנה הבה נבחן את הנקודה
וכמרחק של נקודה
מכאן משוואת פרבולה
או
או
פרבולה יחד עם המיקוד ואת directrix מופיע כפי שמוצג להלן.
גרף = (x ^ 2-88x + 22y + 605) (x-44) ^ 2 + (y-55) ^ 2-6) (y-66) = 0 -118, 202, -82.6, 77.4 }
תשובה:
# y = -1 / 18 (x ^ 2-88x + 847) #
הסבר:
פוקוס
Directrix
ורטקס
מרחק בין קודקוד למיקוד
מאז Directrix מעל הקודקוד, פרבולה זו נפתחת למטה.
המשוואה שלה היא -
# (x-h) ^ 2 = -4xxaxx (y-k) #
איפה -
# h = 44 #
# k = 60.5 #
# a = 4.5 #
# (x-44) ^ 2 = -4xx4.5 (y-60.5) #
# x ^ 2-88x + 1936 = -18y + 1089 #
# -18y + 1089 = x ^ 2-88x + 1936 #
# -18y = x ^ 2-88x + 1936-1089 #
# -18y = x ^ ^ 2-88x + 847 #
# y = -1 / 18 (x ^ 2-88x + 847) #
מהי המשוואה בצורת תקן של פרבולה עם דגש על (10, -9) ו directrix של y = -14?
Y = x ^ 2 / 10-2x-3/2 מנקודת המיקוד הנתונה (10, -9) ומשוואה של דיריקס y = -14, חישוב pp = 1/2 (-9- 14) = 5/2 לחשב (h, k) h = 10 ו- k = (+ 9) (- 14)) / 2 = -23 / 2 ורטקס (h, k) = (10, -23/2) השתמש בצורת הקודקוד (x ) 2 = 4 = (4/2) (y - 23/2) (x-10) ^ 2 = 10 (y + 23/2 x = 2-20x + 100 = 10y + 115 x ^ 2-20x-15 = 10y y = x ^ 2 / 10-2x-3/2 גרף y = x ^ 2 / 10-2x- (3 + y + 14) = 0 [-35,35, -25,10]}
מהי המשוואה בצורה סטנדרטית של פרבולה עם דגש על (12,5) ו directrix של y = 16?
X ^ 2-24x + 32y-87 = 0 תן להם להיות נקודה (x, y) על parabola. המרחק בין המיקוד ב (12,5) הוא sqrt (x-12) ^ 2 + (y-5) ^ 2) ומרחקו מ- y = 16 y יהיה 16 y | (Y-16) או (x-12) ^ 2 + (y-5) ^ 2 = (y-16) ^ 2 או x ^ 2-24x + 144 + y ^ 2-10 y + 25 = y ^ 2-32y + 256 או x ^ 2-24x + 22y-87 = 0 גרף {x ^ 2-24x + 22y-87 = 0 [-27.5, 52.5, -19.84, 20.16]}
מהי המשוואה בצורה סטנדרטית של פרבולה עם דגש על (12, -5) ו Directrix של y = -6?
מכיוון שהדירקס הוא קו אופקי, אזי הצורה הקדקודית היא y = 1 / (4f) (x - h) ^ 2 + k כאשר הקודקוד הוא (h, k) ו- f הוא המרחק האנכי החתום מקודקוד להתמקד. מרחק המוקד, f, הוא חצי המרחק האנכי מהמיקוד אל הדיריקס: f = 1/2 (-6-- 5) f = -1/2 k = y_ "מיקוד" + fk = -5 - 1/2 k = -5.5 h זהה לקואורדינטת x של המיקוד h = x_ "focus" h = 12 צורת הקודקוד של המשוואה היא: y = 1 / (4) -1 / 2) (x - 12.5) x = 2 - 24x + 144) -5.5.5 שימוש בנכס החלוקה: y = 1 / x ^ 2/2 + 12x- 72-5.5 טופס רגיל: y = -1 / 2x ^ 2 + 12x- 77.5