תשובה:
הסבר:
הקשר בין קואורדינטות קוטביות
המשוואה של קו אופקי היא של הטופס
לפיכך, במשוואה הקואורדינטות הקוטביות יהיה
שני המונים נמצאים במגע על משטח אופקי ללא חיכוך. כוח אופקי מוחל על M_1 וכוח אופקי שני מוחל על M_2 בכיוון ההפוך. מהו גודל כוח המגע בין ההמונים?
13.8 N ראה את דיאגרמות הגוף החופשיות, מהן אנו יכולים לכתוב, 14.3 - R = 3a ....... 1 (כאשר R הוא כוח המגע והאצת המערכת) ו- R-12.2 = 10.a .... 2 לפתרון שאנו מקבלים, R = קשר כוח = 13.8 N
איך אתה ממיר y = 3x ^ 2-5x-y ^ 2 לתוך משוואת הקוטב?
= r = rcostheta y = rsintheta rsintheta = 3 (rcostheta) ^ 2-5 (rcostheta) - (rsintheta) ^ 2 רזינטאטה = 3 ^ ^ 2 ^ 0 ^ 0 ^ 0 ^ 0 ^ 0 ^ 0 ^ 0 ^ 0 ^ 0 ^ 0 ^ 0 ^ 0 ^ 0 ^ 0 ^ 1 ^ 3 ^ 3 ^ 3 ^ 0 ^ 0 ^ 0 ^ (סינטהאטה - 5 קוסטהטה) / (חטא ^ 3 ^ 3 ^ 0 ^ 0 ^ 1) - = - (סינטהאטה + 5 קוסטהאטה) (חטא ^ 2 ^ 3 ^ 1)
איך אתה גרף את משוואת הקוטב r = 3 + 3costheta?
(x ^ 2 + y ^ 2-3x) ^ 2 = 9x ^ 2 + 9y ^ 2 הכפל כל מונח על ידי r כדי לקבל: r ^ 2 = 3r + 3 rcostheta r = sqrt (x ^ 2 + y ^ 2) rcostheta = xx ^ 2 + y ^ 2 = 3sqrt (x ^ 2 + y ^ 2) + 3x (x ^ 2 + y ^ 2-3x) ^ 2 = 9x ^ 2 + 9y ^ 2