מצא את הערך של החטא (א + ב) אם שזוף = 4/3 ו c = b = 5/12, 0 ^ מעלות

מצא את הערך של החטא (א + ב) אם שזוף = 4/3 ו c = b = 5/12, 0 ^ מעלות
Anonim

תשובה:

#sin (a + b) = 56/65 #

הסבר:

בהתחשב, # טאנה = 4/3 ו cotb = 5/12 #

# rarrcota = 3/4 #

# rarrsina = 1 / csca = 1 / sqrt (1 + cot ^ 2a) = 1 / sqrt (1+ (3/4) ^ 2) = 4/5 #

# rarrcosa = sqrt (1-sin ^ 2a) = sqrt (1-4) ^ 2) = 3/5 #

# rarrcotb = 5/12 #

# rarrsinb = 1 / cscb = 1 / sqrt (1 + cot ^ 2b) = 1 / sqrt (1+ (5/12) ^ 2) = 12/13 #

# rarrcosb = sqrt (1-sin ^ 2b) = sqrt (1- (12/13) ^ 2 = = 5/13 #

עכשיו, #sin (a + b) = sina * cosb + cosa * sinb #

#=(4/5)(5/13)+(3/5)*(12/13)=56/65#

תשובה:

#sin (a + b) = 56/65 #

הסבר:

כאן, # 0 ^ מעגל <צבע (סגול) (א) <90 ^ circ => I ^ (st) Quadrant => צבע (כחול) (הכל, fns>> 0. #

# 0 ^ צבע <צבע (סגול) (b) <90 ^ circ => I ^ (st) Quadrant => צבע (כחול) (הכל, fns>> 0 #

לכן, # 0 ^ מעגל <צבע (סגול) (a + b) <180 ^ circ => I ^ (st) ו- II ^ (nd) Quadrant #

# => צבע (כחול) (חטא (+ b)> 0 #

עכשיו, (1 + 16/9) = 5/3 # = / 3 = = =

#:. צבע (אדום) (cosa) = 1 / seca = צבע (אדום) (3/5 #

# => צבע (אדום) (sina) = + sqrt (1-cos ^ 2a) = sqrt (1-9 / 25) = צבע (אדום) (4/5 #

כמו כן, # cotb = 5/12 => cscb = + sqrt (1 + cot ^ 2b) = sqrt (1 + 25/144) = 13/12 #

#:. צבע (אדום) (sinb) = 1 / cscb = צבע (אדום) (12/13 #

# => צבע (אדום) (cosb) = + sqrt (1-sin ^ 2b) = sqrt (1-144 / 169) = צבע (אדום) (5/13 #

לפיכך, #sin (a + b) = sinacosb + cosasinb #

# => חטא (a + b) = 4 / 5xx5 / 13 + 3 / 5xx12 / 13 #

#sin (a + b) = 20/65 + 36/65 = 56/65 #