תשובה:
הסבר:
Parabola הוא מוקד של נקודה אשר נע כך שהוא המרחק מנקודה הנקראת להתמקד ואת המרחק שלה קו נתון שנקרא directrix שווה.
תן את הנקודה להיות
ואת המרחק שלה מן directrix
ומכאן משוואה
ו squiring
או
או
גרף {(x ^ 2xx-50y + 56) (x-9) ^ 2 + (y-12) ^ 2-1) (y + 13) = 0 -76.8, 83.2, -33.44, 46.56 }
מהי המשוואה בצורת תקן של פרבולה עם דגש על (10, -9) ו directrix של y = -14?
Y = x ^ 2 / 10-2x-3/2 מנקודת המיקוד הנתונה (10, -9) ומשוואה של דיריקס y = -14, חישוב pp = 1/2 (-9- 14) = 5/2 לחשב (h, k) h = 10 ו- k = (+ 9) (- 14)) / 2 = -23 / 2 ורטקס (h, k) = (10, -23/2) השתמש בצורת הקודקוד (x ) 2 = 4 = (4/2) (y - 23/2) (x-10) ^ 2 = 10 (y + 23/2 x = 2-20x + 100 = 10y + 115 x ^ 2-20x-15 = 10y y = x ^ 2 / 10-2x-3/2 גרף y = x ^ 2 / 10-2x- (3 + y + 14) = 0 [-35,35, -25,10]}
מהי המשוואה בצורה סטנדרטית של פרבולה עם דגש על (12,5) ו directrix של y = 16?
X ^ 2-24x + 32y-87 = 0 תן להם להיות נקודה (x, y) על parabola. המרחק בין המיקוד ב (12,5) הוא sqrt (x-12) ^ 2 + (y-5) ^ 2) ומרחקו מ- y = 16 y יהיה 16 y | (Y-16) או (x-12) ^ 2 + (y-5) ^ 2 = (y-16) ^ 2 או x ^ 2-24x + 144 + y ^ 2-10 y + 25 = y ^ 2-32y + 256 או x ^ 2-24x + 22y-87 = 0 גרף {x ^ 2-24x + 22y-87 = 0 [-27.5, 52.5, -19.84, 20.16]}
מהי המשוואה בצורה סטנדרטית של פרבולה עם דגש על (12, -5) ו Directrix של y = -6?
מכיוון שהדירקס הוא קו אופקי, אזי הצורה הקדקודית היא y = 1 / (4f) (x - h) ^ 2 + k כאשר הקודקוד הוא (h, k) ו- f הוא המרחק האנכי החתום מקודקוד להתמקד. מרחק המוקד, f, הוא חצי המרחק האנכי מהמיקוד אל הדיריקס: f = 1/2 (-6-- 5) f = -1/2 k = y_ "מיקוד" + fk = -5 - 1/2 k = -5.5 h זהה לקואורדינטת x של המיקוד h = x_ "focus" h = 12 צורת הקודקוד של המשוואה היא: y = 1 / (4) -1 / 2) (x - 12.5) x = 2 - 24x + 144) -5.5.5 שימוש בנכס החלוקה: y = 1 / x ^ 2/2 + 12x- 72-5.5 טופס רגיל: y = -1 / 2x ^ 2 + 12x- 77.5