תשובה:
הסבר:
אם המספר השלם הראשון הוא מוזר
אז את מספר שלם מוזר השני יהיה
ויהיה סכום
אז שני המספרים הם
תוצר של שני מספרים שלמים רצופים הוא 24. מצא את שני מספרים שלמים. תשובה בצורת נקודות מותאמות עם הנמוך ביותר של שני מספרים שלמים. תשובה?
שני המספרים השלמים ברציפות: (4,6) או (-6, -4) תן, צבע (אדום) (n ו- n-2 להיות שני מספרים שלמים רצופים, שבו צבע (אדום) (n inZZ מוצר של n ו n-2 הוא 24 n = n = 2 = = = n = 2-2n-24 = 0 כעת, [(-6) + 4 = -2 ו- (-6) xx4 = -24]: .n ^ N (6) n = 6 = 0: n (6) (n + 4) = 0: n = 6 = 0 או n + 4 = 0 = ל [n inZZ] => צבע (אדום) (n = 6 או n = -4 (i) צבע (אדום) (n = 6) => צבע (אדום) (n-2) = 6-2 = צבע = אדום) (4) אז, שני מספרים שלמים רצופים: (4,6) (ii)) צבע (אדום) (n = -4) => צבע (אדום) (n-2) = -4 = = צבע (אדום) (- 6) אז, שני מספרים שלמים רצופים גם: (- 6, -4)
תוצר של שני מספרים שלמים עוקבים הוא 29 פחות מ 8 פעמים הסכום שלהם. מצא את שני מספרים שלמים. תשובה בצורת נקודות מותאמות עם הנמוך ביותר של שני מספרים שלמים הראשון?
(X, 2) = 8 (x + x 2) - 29 (x, x) : x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 או 1 עכשיו, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. המספרים הם (13, 15). מקרה II: x = 1:. x + 2 = 1 + 2 = 3:. המספרים הם (1, 3). לפיכך, כפי שקיימים כאן שני מקרים; זוג המספרים יכול להיות גם (13, 15) או (1, 3).
"לנה יש 2 מספרים שלמים רצופים.היא שמה לב שסכוםם שווה להפרש בין הריבועים. לנה בוחרת עוד 2 מספרים שלמים רצופים ומציגה את אותו הדבר. להוכיח אלגברי כי זה נכון עבור כל 2 מספרים שלמים רצופים?
חביב עיין בהסבר. נזכיר כי מספרים שלמים רצופים שונים על ידי 1. לפיכך, אם מ 'הוא מספר שלם, ולאחר מכן, מספר שלם מצליח להיות n +1. סכום שני מספרים שלמים אלה הוא n + (n + 1) = 2n + 1. ההבדל בין הריבועים שלהם הוא (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -N ^ 2, = 2n + 1, לפי הצורך! להרגיש את שמחת המתמטיקה.!