כאן המרחק הנדרש הוא רק טווח של תנועה קליע, אשר ניתנת על ידי הנוסחה
בהתחשב,
אז, לשים את הערכים שניתנו לנו,
תשובה:
הסבר:
טווח (
# "R" = ("u" ^ 2 חטא (2theta)) / "g" #
קליע הוא נורה בזווית של pi / 12 ומהירות של 6 6 m / s. מה המרחק בין הקליע?
נתונים: - זווית ההשלכה = תנטה = pi / 12 מהירות ראשונית וזרימה = v_0 = 36m / s תאוצה עקב כוח הכבידה = g = 9.8m / s ^ 2 טווח = R = ?? : אנו מודעים לכך ש- R = (v_0 = 2sin2theta) / g מרמז על R = (36 ^ 2sin (2 * pi / 12)) / 9.8 = (1296sin (pi / 6)) / 9.8 = (1296 * 0.5) /9.8=648/9.8=66.1224 m מציין R = 66.1224 m
אם קליע הוא נורה בזווית של (2pi) / 3 ובמהירות של 64 מ ש, מתי זה יגיע לגובה המרבי?
~ 5.54s מהירות ההקרנה, u = 64ms ^ -1 זווית ההקרנה, אלפא = 2pi / 3 אם הזמן להגיע לגובה המרבי יהיה t אז תהיה מהירות אפס בשיא. So0 = u * sinalpha- g * t => t = u * sinalpha / g = 64 * sin (2pi / 3) /10=6.4_1sqrt3/2=3.2*sqrt3m ~~5.54s
קליע הוא נורה בזווית של pi / 12 ו מהירות של 4 מ ש. מה המרחק בין הקליע?
התשובה היא: s = 0.8m תן את התאוצה הכבידה להיות g = 10m / s ^ 2 הזמן נסע יהיה שווה את הזמן שהוא מגיע לגובה המרבי שלה t_1 בתוספת הזמן הוא פוגע הקרקע t_2. ניתן לחשב את שתי הפעמים האלה מהתנועה האנכית: המהירות האנכית הראשונית היא: u_y = u_0sinθ = 4 * sin (π / 12) u_y = 1.035m / s הזמן לגובה המרבי t_1 כאשר האובייקט מאט: u = u_y-g * t_1 מאחר שהאובייקט מפסיק סוף סוף u = 0 0 = 1.035-10t_1 t_1 = 1.035 / 10 t_1 = 0.1035s הזמן להכות את הקרקע t_2 הגובה בזמן העלייה היה: h = u_y * t_1-1 / 2 * g * t = ^ 2 = 1.035 * 0.1035-1 / 2 * 10 * 0.1035 ^ 2 h = 0.05359m גובה זהה חל על זמן הירידה, אך עם נוסחת הנפילה החופשית: h = 1/2 * g * t_2 ^ 2 t_2