תשובה:
הסבר:
תן
הגבולות משתנים ל
כפי שאנו מכירים את
לפיכך,
איך אתה מעריך את אינטגרל אינטגרל int t רבוע (t ^ 2 + 1dt) מוגבל על ידי [0, sqrt7]?
(= T + 2 + 1) dt = int_0 ^ sqrt7 1/2 * [(t ^ 2 + 1) ^ (3/2) / (3/2) 'dt = 1/3 * [(t ^ 2 + 1) ^ (3/2)] _ 0 ^ sqrt7 = 1/3 (16 sqrt (2) -1) ~ ~ 7.2091
איך אתה מעריך את אינטגרל אינטגרל אינט (2t-1) ^ 2 מ [0,1]?
1/3 int_0 ^ 1 (2t-1) ^ 2dt תן u = 2t-1 מרמז du = 2dt ולכן dt = (du) / 2 שינוי גבולות: t: 0rarr1 מרמז u: -1 rarr1 אינטגרל הופך: 1 / 2int_ -1) 1 - - 1 / 3u ^ 3] _ (- 1) ^ 1 = 1/6 [1 - (-1)] = 1/3
איך אתה מעריך את אינטגרל אינטגרל int sec ^ 2x / (1 + tan ^ 2x) מ [0, pi / 4]?
Pi / 4 שים לב כי מהזהות הפיתגוראנית השנייה, 1 + tx = 2x = secx 2x פירושו שהקטע שווה ל- 1 וזה משאיר לנו את האינטגרל הפשוט למדי של int_0 ^ (pi / 4) dx = x | _0 ^ (pi / 4) = pi / 4