תשובה:
האזור הוא
הסבר:
יש משוואה עבור אזור המעגל:
איפה
אם נכתוב
תשובה:
שטח המעגל הוא
הסבר:
שטח המעגל מוגדר עם משוואה זו:
מתי
רדיוס המעגל הגדול גדול פי שניים מרדיוס המעגל הקטן יותר. שטח הדונאט הוא 75 pi. מצא את הרדיוס של המעגל הקטן (הפנימי).?
רדיוס קטן יותר הוא 5 תן r = רדיוס המעגל הפנימי. הרדיוס של המעגל הגדול יותר הוא 2r. מן ההתייחסות אנו מקבלים את המשוואה עבור שטח של annulus: A = pi (R ^ 2-r ^ 2) תחליף 2r עבור R: A = pi ((2r) ^ 2 r (2 = 4) = 4 = 2 = 3 = 3 תחליף תחליף באזור הנתון: 75pi = 3pir = 2 מחלקים את שני הצדדים על ידי 3pi: 25 = r = 2 r = 5
גליל יש רדיוס של 4 אינץ 'שטח שטח בצד של 150.72 אינץ'. מהו שטח הצילינדר?
לגלוש. A = 251.25 שטח שטח של גליל: = 2pir ^ 2 + h (2pir) h (2pir) ניתנת 150.72 2pir ^ 2 = 2pi (4) ^ 2 = 32pi = 100.53 100.53 + 150.72 = 251.25
מעגל A יש רדיוס של 2 ומרכז של (6, 5). מעגל B יש רדיוס של 3 ומרכז של (2, 4). אם המעגל B מתורגם על ידי <1, 1>, האם הוא חופף למעגל A? אם לא, מהו המרחק המינימלי בין נקודות בשני המעגלים?
"מעגלים חופפים"> "מה שאנחנו צריכים לעשות כאן הוא להשוות את המרחק (ד)" "בין המרכזים לסך רדיוס" "" אם סכום רדיוס "> ד" אז עיגולים חופפים "" "אם סכום של לאחר מכן, יש לחשב מחדש את הרדי "d" ואז לא חפיפה "" לפני חישוב d אנו דורשים למצוא את המרכז החדש "" של B אחרי התרגום הנתון "" <1,1> (2,4) ל (2 + 1, 4 + 1) ל (3,5) larrcolor (אדום) "מרכז חדש של B" כדי לחשב ד להשתמש "צבע" (כחול) "נוסחת המרחק" d = sqrt (x_2-x_1) ^ 2 + (y_2- y () "2 ()") y () "let" (x_1, y_1) = () (2)