מהי המשוואה של הקו העובר בין הנקודות (3,3) לבין (-2, 17)?

מהי המשוואה של הקו העובר בין הנקודות (3,3) לבין (-2, 17)?
Anonim

תשובה:

# y = -2.8x + 11.4 #

הסבר:

עבור כל שתי נקודות על קו ישר (כפי שניתן על ידי משוואה ליניארית)

היחס בין ההפרש בין # y # ערכים המתואמים על ידי ההפרש בין #איקס# לתאם ערכים (נקרא מדרון) הוא תמיד אותו הדבר.

בשביל הנקודה הכללית # (x, y) # ונקודות ספציפיות #(3,3)# ו #(-2,17)#

זה אומר ש:

המדרון (3 -) - (3 -) - (3) - (3) - (3)) #

הערכת הביטוי האחרון שיש לנו

המדרון #= (3-17)/(3-(-2))=(-14)/(5)=-2.8#

ולכן שניהם

#): (x-3) (= x) (- x) (- x)) = - 2.8):} #

אנחנו יכולים להשתמש באחד משני אלה כדי לפתח את המשוואה שלנו; הראשון נראה לי יותר קל (אבל אתה מוזמן לבדוק את זה עם הגירסה השנייה כדי לראות כי אתה מקבל את אותה תוצאה).

אם # (y-3) / (x-3) = - 2.8 #

אז (בהנחה #x! = 3 #, אחרת הביטוי חסר משמעות)

לאחר הכפלת שני הצדדים על ידי # (x-3) #

#color (לבן) ("XX") y-3 = -2.8x 8.4 #

ולכן (לאחר הוספת #3# לשני הצדדים)

#color (לבן) ("XX") y = -2.8x + 11.4 #