תשובה:
הקומזנאליזם הוא מערכת יחסים שבה אורגניזם אחד מועיל, בעוד שהאחר אינו עוזר ולא נפגע.
הסבר:
The commensals עשוי לקבל חומרים מזינים, מחסה, תמיכה או תנועה מן המין המארחת, אשר אינה מושפעת באופן משמעותי.
כינים שונים נושך, פרעושים וכוכבים זבובים הם commensals בכך שהם מזינים ללא מזיק על נוצות ו slugghed העור מן היונקים.
הקומזנאליזם עשוי להשתנות מכוחו ומשךו מסימבולים אינטימיים, ארוכי ימים, כדי ליצור אינטראקציות קצרות וחלשות באמצעות מתווכים.
יש לך למד את מספר האנשים מחכה בתור בבנק שלך ביום שישי אחר הצהריים ב 3 אחר הצהריים במשך שנים רבות, ויצרו חלוקה הסתברות עבור 0, 1, 2, 3, או 4 אנשים בתור. ההסתברויות הן 0.1, 0.3, 0.4, 0.1 ו- 0.1, בהתאמה. מה ההסתברות שלרוב 3 אנשים עומדים בתור בשעה 3 אחר הצהריים ביום שישי אחר הצהריים?
לכל היותר 3 אנשים בתור יהיו. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0.1 + 0.3 + 0.4 + 0.1 = 0.9 כך P (X <= 3) = 0.9 להיות קל יותר אם להשתמש בכללים מחמאה, כמו שיש לך ערך אחד שאתה לא מעוניין, אז אתה יכול פשוט מינוס זה מן ההסתברות הכוללת. (X = 4) = 1 - 0.1 = 0.9 כך P (X <= 3) = 0.9
יש לך למד את מספר האנשים מחכה בתור בבנק שלך ביום שישי אחר הצהריים ב 3 אחר הצהריים במשך שנים רבות, ויצרו חלוקה הסתברות עבור 0, 1, 2, 3, או 4 אנשים בתור. ההסתברויות הן 0.1, 0.3, 0.4, 0.1 ו- 0.1, בהתאמה. מה ההסתברות שלפחות 3 אנשים עומדים בתור בשעה 3 אחר הצהריים ביום שישי אחר הצהריים?
זהו מצב ... או מצב. אתה יכול להוסיף את ההסתברויות. התנאים הם בלעדיים, כלומר: אתה לא יכול להיות 3 ו 4 אנשים בשורה. ישנם שלושה אנשים או 4 אנשים בתור. אז יש לבדוק את התשובה (אם יש לך זמן בזמן הבדיקה), על ידי חישוב ההסתברות ההפוכה: P (<3) P = (0) + P (1) + P (2) = 0.1 + 0.3 + 0.4 = 0.8 וזה התשובה שלך להוסיף עד 1.0, כפי שהם צריכים.
יש לך למד את מספר האנשים מחכה בתור בבנק שלך ביום שישי אחר הצהריים ב 3 אחר הצהריים במשך שנים רבות, ויצרו חלוקה הסתברות עבור 0, 1, 2, 3, או 4 אנשים בתור. ההסתברויות הן 0.1, 0.3, 0.4, 0.1 ו- 0.1, בהתאמה. מהו המספר הצפוי של אנשים (מתכוון) מחכה בתור בשעה 3 אחר הצהריים ביום שישי אחר הצהריים?
המספר הצפוי במקרה זה יכול להיחשב כממוצע משוקלל. זה הכי טוב הגיע על ידי סיכום ההסתברות של מספר נתון על ידי מספר זה. אז, במקרה זה: 0.1 * 0 + 0.3 * 1 + 0.4 * 2 + 0.1 * 3 + 0.1 * 4 = 1.8