מהו וקטור היחידה שהוא אורתוגונלי למישור המכיל (3i + 2j - 3k) ו- (i - j + k)?

מהו וקטור היחידה שהוא אורתוגונלי למישור המכיל (3i + 2j - 3k) ו- (i - j + k)?
Anonim

תשובה:

# hat {n} _ {AB} = -1 / sqrt {62} (hat {i} +6 hat {j} +5 sq {}} #

הסבר:

וקטור היחידה מאונך למישור המכיל שני וקטורים # vec {A _ {}} # ו # vec {B _ {}} # J

# hat {n} _ {AB} = frac { vec {A} times vec {B}} { vec {A} times vec {B} |} #

# vec {A_ {}} = 3 hat {i} +2 hat {j} -3 hat {k}; qquad vec {B_ {}} = hat {i} - hat {j} + hat {k}; #

# vec {A _ {}} times vec {B_ {}} = - (hat {i} +6 hat {j} +5 hat {k}); #

# _cc {{_} - 6} ^ 2 + (- 5) ^ 2} = sqrt {62} #

# hat {n} _ {AB} = -1 / sqrt {62} (hat {i} +6 hat {j} +5 sq {}} #.