כאשר אובייקט נזרק אופקית מגובה קבוע
לכן,
לכן, אנו יכולים לראות את הביטוי הזה הוא עצמאי של מהירות ראשונית
עכשיו, אם זה הלך upto
לכן, אנו יכולים לראות, מן הביטוי לעיל, כי,
אז, על tripling
אובייקט עולה 70% יותר מאשר אובייקט B ו 36% יותר מאשר אובייקט C. על ידי כמה אחוזים הוא אובייקט B זול יותר C אובייקט?
B הוא 25% זול יותר מאשר C אם משהו עולה 70% יותר מאשר הוא גדול פי 1.7 כך: A = 1.7B כמו כן: A = 1.36C לשים את המשוואות יחד: 1.7B = 1.36C לחלק את שני הצדדים על ידי 1.36 1.25B = C אז B הוא 25% זול יותר מאשר C
מהו האנרגיה הקינטית ואת האנרגיה הפוטנציאלית של אובייקט עם 300G המונית נופל מגובה של 200 ס"מ? מהי המהירות הסופית ממש לפני שהיא פוגעת באדמה, אם האובייקט התחיל לנוח?
"מהירות הסופית היא" 6.26 m / s "E_p" ו- "E_k", ראה הסבר "" תחילה עלינו לשים את המדידות ביחידות SI: "m = 0.3 kg h = 2 mv = sqrt (2 * g * h) (= 2 * 9.8 * 2) = 6.26 מ ש "(טוריצ'לי)" E_p "(בגובה 2 מטר)" = m * g * h = 0.3 * 9.8 * 2 = 5.88 J E_k "(על הקרקע) "= m * * v ^ 2/2 = 0.3 * 6.26 ^ 2/2 = 5.88 J" שים לב שעלינו לציין היכן ניקח את "E_p" ו- "E_k". "ברמה הקרקעית" E_p = 0 "". "בגובה 2 מטר" E_k = 0 "." "באופן כללי בגובה H מעל הקרקע יש לנו" E_k = 0.3 * 9.8 * (2-h) E_p = 0.3 * 9.
הכוח המופעל כנגד אובייקט הנע בצורה אופקית על נתיב ליניארי מתואר על ידי F (x) = x + 2-3x + 3. לפי כמה האנרגיה הקינטית של האובייקט משתנה כאשר האובייקט נע מ x ב [0, 1]?
חוק התנועה השני של ניוטון: F = m * a הגדרות של תאוצה ומהירות: a = (du) / dt u = (dx) / dt אנרגיה קינטית: K = m * u ^ 2/2 התשובה היא: ΔK = 11 / 6 * ק"ג * m ^ 2 / s ^ 2 חוק הניוטון השני של התנועה: F = m * ax = 2-3x + 3 = m * a החלפת (=) du / dt לא עוזר עם המשוואה, (dx) / dx = (dx) / dt * (dx) / dx אבל (dx) / dx = u (dx) / dx = dx / dt * dx / dx * / dx = / dx = / dx = u (*) dx מחליף למשוואה שיש לנו, יש לנו משוואה דיפרנציאלית: x ^ 2-3x + 3 = m * (x + 3x + 3) dx = int_ (u_1) ^ (u_2) m * udu (x ^ 2-3x + 3) dx = m * udu int_ (x_1) ^ (x_2) שתי המהירויות אינן ידועות, אך הנקודות x ידועות. כמו כן, המסה קבועה: int_ (1) (1) (x ^ 2