תשובה:
צורה סטנדרטית של מעגל היא
הסבר:
תן את המשוואה של המעגל להיות
הפחתת (1) מ (2) אנחנו מקבלים
ו מחסר (3) מ (2) אנחנו מקבלים
לשים את זה (א), יש לנו
ו לשים ערכים של
ו equation של המעגל הוא
ומרכזו
ואת הטופס הסטנדרטי של המעגל הוא
גרף {x ^ 2 + y ^ 2-14x + 10y + 58 = 0 -3.08, 16.92, -9.6, 0.4}
מרתה משחקת עם לגו. יש לה 300 מכל סוג - 2 נקודה, 4 נקודות, 8 נקודות. כמה לבנים נהגו לעשות זומבי. משתמש 2 נקודות, 4 נקודות, 8 נקודות ביחס 3: 1: 2 כאשר סיים יש כפליים 4 נקודות נשארו 2 ספוט. כמה נקודות 8 נותרו?
ספירת ספוט 8 הנותרת היא 225 הנח את המזהה של נקודה 2 במקום S_2 lr 300 בהתחלה תן את המזהה של נקודה 4 נקודה להיות S_4 larr300 בהתחלה תן את המזהה של נקודה 8 נקודה להיות S_8larr 300 בהתחלה זומבי -> S_2: S_4: S_8 -> 3: 2: 1 שמאלה: S_2: S_4: S_8 -> 1: 2 :? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ שים לב שיש לנו: צבע (חום) ("כניחוש") zombiecolor (לבן) ("dd") -> 3: 2: 1 leftul (-> 1: 2 :?) צבע (לבן) ("ddddddd") -> 4: 4 :? כמו סכום אנכי של כל יחסי סוג שונים היה אותו ערך אני חושד את הערך היחסי האחרון עבור הנותרים יצטרכו להיות 3. הנותרים הנותרים של 1: 2: 3. כפי שמתברר נכון.
מהו הצורה הסטנדרטית של המשוואה של מעגל עם מרכז של מעגל הוא (15,32) ועובר דרך הנקודה (-18,21)?
(x + 15) ^ 2 + (y-32) ^ 2 = 130 הצורה הסטנדרטית של מעגל המתמקדת ב (a, b) ורדיוס r הוא (xa) ^ 2 + (yb) ^ 2 = r ^ 2 . אז במקרה זה יש לנו את המרכז, אבל אנחנו צריכים למצוא את הרדיוס והוא יכול לעשות זאת על ידי מציאת המרחק מהמרכז לנקודת נתון: d ((- 15,32); (- 18,21)) = sqrt (+) - + 2) 2 + (y-32) ^ 2 = 130 = (+) (+
מהו הצורה הסטנדרטית של משוואה של מעגל עם נקודות קצה של קוטר בנקודות (7,8) ו (-5,6)?
(= 1) + (y = 7) ^ 2 = 37 מרכז המעגל הוא נקודת האמצע של הקוטר, כלומר (7-5) / 2, (8 + 6) / 2) = (1 , 7) שוב, הקוטר הוא המרחק בין הנקודות s (7,8) לבין (-5,6): sqrt (7 - (5)) ^ 2 + (8-6) ^ 2 = = sqrt (12 ^ 2 + 2 ^ 2) = 2sqrt (37) כך הרדיוס הוא sqrt (37). לכן הצורה הסטנדרטית של משוואת המעגלים היא (x-1) ^ 2 + (y-7) ^ 2 = 37