מה הם שני מספרים עם סכום של 35 לבין הבדל של 7?

מה הם שני מספרים עם סכום של 35 לבין הבדל של 7?
Anonim

תשובה:

הפוך מערכת של משוואות באמצעות מידע נתון ולפתור כדי למצוא את המספרים #21# ו #14#.

הסבר:

הדבר הראשון לעשות משוואות אלגברי הוא להקצות משתנים למה שאתה לא יודע. במקרה זה, אנחנו לא יודעים גם מספר אז אנחנו נתקשר אליהם #איקס# ו # y #.

הבעיה נותנת לנו שני פיסות מפתח של מידע. ראשית, למספרים האלה יש הבדל #7#; אז כשאתה מחסר אותם, אתה מקבל #7#:

# x-y = 7 #

כמו כן, יש להם סכום של #35#; אז כאשר אתה מוסיף אותם, אתה מקבל #35#:

# x + y = 35 #

עכשיו יש לנו מערכת של שתי משוואות עם שני ידועים:

# x-y = 7 #

# x + y = 35 #

אם נוסיף אותם יחד, אנחנו רואים שאנחנו יכולים לבטל את # y #s

#color (לבן) (X) x-y = 7 #

# + ul (x + y = 35) #

#color (לבן) (X) 2x + 0y = 42 #

# -> 2x = 42 #

עכשיו מחלקים #2# ויש לנו # x = 21 #. מהמשוואה # x + y = 35 #, אנחנו יכולים לראות את זה # y = 35-x #. באמצעות זה ואת העובדה כי # x = 21 #, אנחנו יכולים לפתור עבור # y #:

# y = 35-x #

# -> y = 35-21 = 14 #

אז שני המספרים הם #21# ו #14#, אשר אכן להוסיף #35# ויש להם הבדל #7#.