שלושת המונחים הראשונים של 4 מספרים שלמים הם ב אריתמטי P.and את שלושת המונחים האחרונים נמצאים Geometric.P.How למצוא אלה 4 מספרים? בהתחשב (1 + טווח אחרון = 37) ו (סכום של שני מספרים שלמים באמצע הוא 36)
"12, 16, 20, 25. תן לנו לקרוא את התנאים t_1, t_2, t_3, ו t_4, שם, t_i ב ZZ, אני = 1-4. בהתחשב בכך, את התנאים t_2, t_3, t_4 טופס GP, אנחנו לוקחים, t_2 = a / r, t_3 = a, ו, t_4 = ar, שם, ane0 .. כמו כן בהתחשב בכך, t_1, t_2, ו- t_3 הם ב- AP, יש לנו, 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. לכן, בסך הכל, יש לנו, sq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, ו, t_4 = ar. לפי מה שניתן, t_2 + t_3 = 36 rArra / r + a = 36, כלומר (1 + r) = 36r ....................... .................................................. יתר על כן, t_1 + t_4 = 37, ....... "[נתון]" rArr (2a) / r-a + ar = 37, כלומר, (2 r + r 2) = 37
סכום של ארבעה מספרים שלמים עוקבים הוא שלושה יותר מ 5 פעמים לפחות של מספרים שלמים, מה הם מספרים שלמים?
N -> {9,11,13,15} צבע (כחול) ("בונים את המשוואות") תן את המונח הראשון מוזר להיות n תן את סך כל התנאים להיות S אז טווח 1 -> n טווח 2> n +2 טווח 3> n + 4 טווח 4-> n + 6 ואז s = 4n + 12 ................................ (1) בהתחשב בכך s = 3 + 5n .................................. 2) '~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ משוואה (1) עד (2) ובכך מסירה את משתנים s 4n + 12 = s = 3 + 5n איסוף כמו מונחים 5n-4n = 12-3 n = 9 '~ ~ ~~~~~~~~~~~~~~~~~~~~~~~ כלומר, המונחים הם: טווח 1-> n-> 9 טווח 2> n + 2> 11 טווח 3> n + 4-> 13 טווח 4-> n + 6> 15 n -> { 9,11,13,15}
שלושה מספרים שלמים רצופים יכולים להיות מיוצגים על ידי n, n + 1, ו- n + 2. אם סכום של שלושה מספרים שלמים רצופים הוא 57, מה הם מספרים שלמים?
18,19,20 סכום הוא תוספת של מספר כך שסכום n, n + 1 ו- n + 2 ניתן לייצג כ- n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 אז מספר שלם הראשון שלנו הוא 18 (n) השני שלנו הוא 19, (18 + 1) ואת השלישי שלנו הוא 20, (18 + 2).