#f '(x) = e ^ x / (e ^ x + 3) # פתרון
ללא שם: בואו
# y = ln (f (x)) # הבחנה ביחס
#איקס# באמצעות כלל שרשרת, אנחנו מקבלים,# y '= 1 / f (x) * f' (x) # כמו כן בעקבות התשואות בעיה נתון,
#f '(x) = 1 / (e ^ x + 3) * e ^ x #
#f '(x) = e ^ x / (e ^ x + 3) #
מהי הנגזרת של (x + 2 + 5) / (x ^ 2 + 5) ^ 2?
(x ^ 2 + 5) (2x)) / ((x ^ 2 +5) ^ 2) ^ 2 (x ^ 2 + 5) (x ^ 2 + 5) (2x)) / ((x ^ 2 +5) ^ 2) ^ 2 (x ^ 2 + 5) (x + 2 +5) + (x + 2 +5) + (x + 2 +5) + 4 (y + = = 2x ^ 5 - 20x ^ 2 - 50x + 4x ^ 5 - 100x) / (x ^ 2 +5) ^ 4 y = = (2x ^ 5 - 20x ^ 2 - 150x) / ( x ^ 2 +5) ^ 4
מהי הנגזרת של f (x) = sec (5x)?
Sec (5x) tan (5x) * 5 נגזרת של sec (x) היא sec (x) tan (x). עם זאת, מאז זווית הוא 5x ולא רק x, אנו משתמשים כלל שרשרת. אז אנחנו להכפיל שוב על ידי נגזרת של 5x שהוא 5. זה נותן לנו את התשובה הסופית שלנו כמו sec (5x) שזוף (5x) * 5 זה עזר!
איך אתה משתמש בהגדרת הגבול של הנגזרת כדי למצוא את הנגזרת של y = -4x-2?
4 (h (x) h (x) h () h (x) h () h () h (0) h (0) h (x) h (h) (x (h)) - (h + x) h / h = 0) (x + h) ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) (- - 4h) / h) מפשט על ידי h = lim (h-> 0) (- 4) = -4