מהו הצורה הסטנדרטית של f (x) = (x-1) ^ 2- (3x + 4) ^ 2?

מהו הצורה הסטנדרטית של f (x) = (x-1) ^ 2- (3x + 4) ^ 2?
Anonim

תשובה:

טופס רגיל #f (x) = - 8x ^ 2-26x-15 #

הסבר:

טופס סטנדרטי של פולינום ריבועי עם משתנה אחד הוא #f (x) = ax = 2 + bx + c #.

לפיכך להמיר #f (x) = (x-1) ^ 2- (3x + 4) ^ 2 #, יש להרחיב את RHS, תוך שימוש בזהות # (a + -b) ^ 2-a ^ 2 + -2ab + b ^ 2 #

#f (x) = (x-1) ^ 2- (3x + 4) ^ 2 #

= # x ^ 2-2x + 1 - (3x) ^ 2 + 2xx3x xx4 + 4 ^ 2) # # או

= # x ^ 2-2x + 1- (9x ^ 2 + 24x + 16) # #

= # x ^ 2-2x + 1-9x ^ 2-24x-16 #

= # -8x ^ 2-26x-15 #