תן P (x_1, y_1) להיות נקודה ולתת לי את הקו עם גרזן משוואה + על ידי + C = 0.הצג את המרחק d מ P-> l ניתן על ידי: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? מצא את המרחק d של נקודת P (6,7) מן הקו l עם משוואה 3x + 4y = 11?
D = 7 תן l-> x + b y + c = 0 ו- p_1 = (x_1, y_1) נקודה לא על l. נניח ש - b 0 n וקורא d + 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 לאחר החלפת y = - (x + c) / b לתוך d ^ 2 יש לנו d ^ 2 = x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. השלב הבא הוא למצוא את d ^ 2 המינימום לגבי x כך אנו מוצאים x כך d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 ) (/ b = 2) עכשיו, החלפת ערך זה לתוך d = 2 נקבל d ^ 2 = (c + a + x_1 + b y_1) = 2 / (a ^ 2 + b ^ 2) כך d = (c + a x_1 + b y_1) / sqrt (a ^ 2 + b ^ 2) עכשיו ניתן l-> 3x + 4y -1 = 0 ו- p_1 = (6,7) ולאחר מכן d = (-11 + 3xx6 + 4xx7) / sqrt (3 ^ 2 + 4 ^ 2) = 7
מהו המדרון של הקו המתואר על ידי משוואה זו: P = 3Q + 1/2?
= 1/3 P = 3Q + 1/2 או 3Q = P-1/2 או Q = P / 3-1 / 2 מאז y = mx + c אומר m הוא המדרון בדומה למשוואה Q = P / 3- 1/2 slope הוא 1/3
מהו המדרון של הקו של משוואה זו: 9x + 8y -13 = 0?
M = -9 / 8 השיפוע של קו ניתן למצוא כאשר משוואה לינארית נכתבת בצורה: y = mx + b כאשר m הוא המדרון של הקו. אתה יכול להגיע לטופס זה, על ידי בידוד אלגברי y. 9x + 8y-13 = 0 הוסף 13 לשני הצדדים: 9x + 8y = 13 החסר 9x משני הצדדים: 8y = -9x + 13 "(שים לב 9x יכול ללכת מול 13) מחלקים את שני הצדדים על ידי 8: y = -9 / 8x + 13/8 המדרון הוא מקדם המונח x. תשובה: m = -9 / 8