תוכלו להשתמש SOHCAHTOA ותרשים טריגונומטריה.
SOHCAHTOA הוא ראשי תיבות המשמשים לייצג את המשוואות של סינוס, cosine, ו משיק.
נניח שיש לך משולש זה עם זווית
סינוס: למדוד את הרגל ההפוכה מחולק למדד של hypotenuse.
SOH:
Cosine: למדוד את הרגל הסמוכה (נוגע) מחולק למדד של hypotenuse.
CAH:
משיק: מידה של הרגל ההפוכה מחולקת למדד הרגל הסמוכה.
טו:
אתר זה סיפק דוגמאות והסברים מועילים גם: (http://www.mathwords.com/s/sohcahtoa.htm)
סביר להניח שהמורה שלך יספק לך גם תרשים טריגונומטריה. זה מאוד לא סביר כל מורה מצפה תלמיד כדי לשנן את זה. כדי להשתמש בתרשים תמצאו סינוס, קוסינוס או עמודה משיק לאורך הדף ופעל בעמודה עד הערך הקרוב ביותר לתשובתך שמצאת באמצעות SOHCAHTOA. לצד ערך זה בתרשים תהיה דרגה שהיא התשובה שלך.
שאלה # a01f9 + דוגמה
תואר השוואתי הוא מידת התואר שמשנה שם עצם בהשוואה לאותו שם עצם אחר. אזכור כינוי הוא הקשר כי כינוי יש הקדמון שלה. מטרות תארים של תארים הם חיוביים, השוואתיים, ו superlative. תואר חיובי הוא טופס הבסיס של שם התואר: - חם - חדש - מסוכן - שלם תואר השוואתי הוא תואר המתאר (משנה) שם עצם בהשוואה למשהו דומה או זהה: - hotter - חדש יותר - יותר מסוכן - יותר שלם שם תואר מופלג הוא תואר המתאר (משנה) שם עצם לעומת כל האחרים הדומים או אותו: - hottest - החדש - המסוכן ביותר - השלם ביותר הערה: בדרך כלל, שמות תואר עם יותר מברה אחת משתמשים ב'יותר 'ו'כי' ביותר כדי לתאר את ההשוואה והמופתה של שם עצם. PRONOUN REFERENCES אזכור כינוי פירוש
שאלה # c67a6 + דוגמה
אם משוואה מתמטית מתארת כמות פיזיקלית כפונקציה של זמן, הנגזרת של משוואה זו מתארת את שיעור השינוי כפונקציה של זמן. לדוגמה, אם ניתן לתאר את התנועה של מכונית כ: x = vt אז בכל עת (t) אתה יכול להגיד מה את המיקום של המכונית יהיה (x). הנגזרת של x ביחס לזמן היא: x '= v. V זה הוא שיעור השינוי של x. זה חל גם על מקרים שבהם המהירות אינה קבועה. תנועה של קליע מושלך ישר יתואר על ידי: x = v_0t - 1 / 2g t ^ 2 הנגזרת ייתן לך את המהירות כפונקציה של t. x = = v_0 - g t בזמן t = 0 המהירות היא פשוט v_0 מהירות ההתחלה. בשלב מאוחר יותר, כוח הכבידה יהיה כל הזמן יוריד את המהירות עד שהיא הופכת אפס ואז שלילי. אבל זה לא רק משוואות תנועה. אם אתם שוא
שאלה # 53a2b + דוגמה
הגדרה זו של המרחק היא קבועה תחת שינוי של מסגרת אינרציה, ולכן יש משמעות פיזית. החלל מינקובסקי בנוי כחלל בעל 4 ממדים עם קואורדינטות פרמטרים (x_0, x_1, x_2, x_3, x_4), שבו אנו בדרך כלל אומרים x_0 = ct. בלב ליבה של תורת היחסות הפרטית, יש לנו טרנספורמציות לורנץ, שהן טרנספורמציות ממסגרת אינרציה אחת לאחרת שמשאירות את מהירות האור הבלתי משתנה. אני לא אלך לגזירה מלאה של הטרנספורמציות של לורנץ, אם אתה רוצה שאסביר לך את זה, רק תשאלו ואני אעבור לפרטים נוספים. מה שחשוב הוא הבא. כאשר אנו מתבוננים בחלל האוקלידיאני (המרחב שבו יש לנו את ההגדרה הרגילה של אורך שאנו רגילים ל ds ^ 2 = dx_1 ^ 2 + dx_2 ^ 2 + dx_3 ^ 2), יש לנו טרנספורמציות מסוימות