להוכיח כי: - cot ^ -1 (theta) = cos ^ -1 (theta) / 1 + (theta) ²?

להוכיח כי: - cot ^ -1 (theta) = cos ^ -1 (theta) / 1 + (theta) ²?
Anonim

תן #cot ^ (- 1) theta = A # לאחר מכן

# rarrcotA = theta #

# rarrtanA = 1 / theta #

# 1 rarrcosA = 1 / secA = 1 / sqrt (1 + tan ^ 2A) = 1 / sqrt (1+ (1 / theta) ^ 2)

# 1 rarrcos = 1 / sqrt (1 + theta ^ 2) / theta ^ 2) = theta / sqrt (1 + theta ^ 2) # #

# rarrA = cos ^ (- 1) (theta / (sqrt (1 + theta ^ 2)) = cot ^ (- 1) (theta) #

# (1) (tta) (1)) (1) (theta)