תשובה:
כתוב משוואה כדי לייצג את המצב
הסבר:
מקום על מכנה משותף:
עכשיו אתה יכול לבטל את המכנים ולפתור את משוואה ריבועית שהתקבל.
לפתור על ידי factoring כהבדל של ריבועים.
(x + 10) (x - 10) = 0
x = -10 ו -10
המספרים הם -10 ו -10.
תרגילים:
- שליש מהמספר שנוסף לארבע פעמים הוא שווה למחצית המנה של 104 והמספר.
המספר השלישי הוא סכום המספר הראשון והשני. המספר הראשון הוא אחד במספר השלישי. איך מוצאים את 3 המספרים?
תנאים אלה אינם מספיקים כדי לקבוע פתרון יחיד. a = "מה שאתה רוצה" b = -1 c = a - 1 בוא נקרא לשלושת המספרים a, b ו- c. אנו מקבלים: c = a + ba = c + 1 באמצעות המשוואה הראשונה, ניתן להחליף את + b עבור c במשוואה השנייה כדלקמן: a = c + 1 = (a + b) + 1 = a + b + 1 ואז לחסר את שני הקצוות כדי להגיע: 0 = b 1 + 1 ירידה משני הקצוות להגיע: -1 = = כלומר: b = -1 המשוואה הראשונה עכשיו הופך: c = a (-1) = a - 1 הוסף 1 לשני הצדדים כדי לקבל: c + 1 = a זה בעצם זהה למשוואה השנייה. אין מספיק אילוצים כדי לקבוע a ו- c ייחודי. אתה יכול לבחור כל ערך שאתה אוהב עבור ולתת c = a - 1.
סכום של שני מספרים עוקבים הוא 77. ההבדל של מחצית מספר קטן יותר ושליש של המספר הגדול יותר הוא 6. אם x הוא מספר קטן יותר ו- y הוא המספר הגדול יותר, אשר שתי משוואות מייצגות את הסכום ואת ההבדל של המספרים?
X = y = 77 1 / 2x-1 / 3y = 6 אם אתה רוצה לדעת את המספרים אתה יכול להמשיך לקרוא: x = 38 y = 39
כאשר פולינום מחולק (x + 2), השאר הוא 19. כאשר פולינום זהה מחולק (x-1), השאר הוא 2, איך אתה קובע את שארית כאשר פולינומי מחולק (x + 2) (x-1)?
אנו יודעים כי f (1) = 2 ו - f (-2) = - 19 מן השורש שרידים עכשיו למצוא את שארית של פולינום F (x) כאשר מחולק (x-1) (x + 2) הנותרים יהיה של את הצורה + B, כי זה השאר אחרי חלוקה על ידי ריבועי. כעת אנו יכולים להכפיל את המחלק פעמים את המנה Q ... f (x) = Q (x-1) (x + 2) + Ax + B הבא, הוסף 1 ו -2 עבור x ... f (1) = Q (1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (+ 2 + 2) + A (-2) + B = -2A + B = -19 פתרון שתי משוואות אלה, אנו מקבלים A = 7 ו- B = -5 Remainder = Ax + B = 7x-5