תשובה:
הסבר:
הנוסחה של שיפוע של קו המבוסס על שתי נקודות קואורדינטות הוא
עבור נקודות הקואורדינטות
המדרון הוא
הנוסחה של נקודת השיפוע תהיה כתובה
הצורה של נקודת השיפוע של המשוואה של הקו העובר (-5, -1) ו- (10, -7) היא y + 7 = -2 / 5 (x-10). מהי הצורה הסטנדרטית של המשוואה עבור שורה זו?
2 / 5x + y = -3 הפורמט של טופס סטנדרטי עבור משוואה של קו הוא Ax + + By C. C המשוואה שיש לנו, y + 7 = -2 / 5 (x-10) טופס שיפוע. הדבר הראשון שיש לעשות הוא להפיץ את -2.5 (x-10): y + 7 = -2 / 5 (x-10) y + 7 = -2 / 5x + 4 עכשיו בואו נחסר 4 משני צדי משוואה: y + 3 = -2 / 5x מאחר והמשוואה צריכה להיות Ax + + C =, נזיז 3 לצד השני של המשוואה ו -2 / 5x לצד השני של המשוואה: 2 / 5x + y = -3 משוואה זו נמצאת כעת בצורה סטנדרטית.
מהי המשוואה עבור הקו העובר דרך הנקודה (3,4), וזה מקביל לקו עם המשוואה y + 4 = -1 / 2 (x + 1)?
המשוואה של הקו היא y = 4 = -1 / 2 (x-3) [המדרון של הקו y + 4 = -1 / 2 (x + 1) או y = -1 / 2x -9/2 הוא המתקבל על ידי השוואת המשוואה הכללית של קו y = mx + c כמו m = -1 / 2. השיפוע של קווים שווים שווה. המשוואה של הקו העובר (3,4) היא y-y_1 = m (x-x_1) ory-4 = -1/2 (x-3) [Ans]
מהי המשוואה בצורת קו המדרון של הקו העובר דרך המשוואה בנקודות הנתונות (1,3) ו- (0, 0)?
(3 - 4) (3 - 4) x / 1) או (y-0) = 3/4 (x - (- 3)) השיפוע של קו העובר (x_1, y_1) ו- (x_2, y_2) הוא (y3-y_1) / (x_2-x_1) לפיכך, המדרון של הקו שהצטרף (1,3) ו (-3,0) הוא (0-3) / (- 3-1) = (3) / ( -4) = 3/4. (x, a) = m (yb), המשוואה הרצויה בצורת מדרון נקודתית (y-3) = 3/4 (x- 1) כאשר הוא עובר דרך (1,3) או (y-0) = 3/4 (x - (3)) כאשר הוא עובר דרך (1,3) שניהם מובילים ל 3x-4y + 9 = 0