תשובה:
המינימום המוחלט הוא
המקסימום המוחלט הוא
הסבר:
האקסטרמה המוחלטת של פונקציה היא הערכים y ו- y הקטנים ביותר של הפונקציה בתחום נתון. דומיין זה עשוי להינתן לנו (כמו בבעיה זו) או שהוא עשוי להיות תחום הפונקציה עצמה. גם כאשר אנו מקבלים את התחום, עלינו לשקול את התחום של הפונקציה עצמה, למקרה שהוא אינו כולל את כל הערכים של התחום שאנו מקבלים.
עם זאת, אנחנו עדיין צריכים לשקול את העובדה כי המכנה לא יכול להיות שווה אפס. המכנה יהיה שווה אפס כאשר
אז, אנחנו פונים למציאת extrma מוחלטת ב
אם אנחנו גורם
אין ערכים של
באמצעות "מבחן המועמדים", אנו מוצאים את הערכים של
בדיקה מהירה על מחשבונים שלנו מראה כי:
מה הם extrema המוחלט של f (x) = x ^ 3 - 3x + 1 ב [0,3]?
ב [0,3], המקסימום הוא 19 (ב- x = 3) והמינימום הוא -1 (ב- x = 1). כדי למצוא את extrema המוחלט של פונקציה (רציפה) על מרווח סגור, אנו יודעים כי extrema חייב להתרחש גם numers קריטית במרווח או בנקודות הקצה של המרווח. f (x) = x ^ 3-3x + 1 יש נגזרת f (x) = 3x ^ 2-3. 3x ^ 2-3 הוא לעולם לא מוגדר ו 3x ^ 2-3 = 0 ב x = + - 1. מאחר ש -1 אינו נמצא במרווח [0,3], אנו משליכים אותו. המספר הקריטי היחיד שיש לקחת בחשבון הוא 1. f (0) = 1 f (1) = -1 ו- f (3) = 19. לכן, המקסימום הוא 19 (ב- x = 3) והמינימום הוא -1 ( x = 1).
מה הם extrema המוחלט של f (x) = (x ^ 3-7x ^ 2 + 12x-6) / (x-1) ב- [1,4]?
אין מקסימום עולמי. המינימום הגלובאלי הוא -3 ומתרחש ב- x = 3. f (x) = (x ^ 3 - 7x ^ 2 + 12x - 6) / (x - 1) f (x) = (x - 1) (x (X - 1) f (x) = x = 2 - 6x + 6, כאשר x 1 f '(x) = 2x - 6 האקסטרה המוחלטת מתרחשת בנקודת קצה או מספר קריטי. נקודות קצה: 1 & 4: x = 1 f (1): "undefined" lim_ (x 1) f (x) = 1 x = 4 f (4) = -2 נקודות קריטיות: f (x) = 2x - 6 f (x) = 0 2x - 6 = 0, x = 3 ב x = 3 f (3) = -3 אין מקסימום עולמי. אין מינימה גלובלית היא -3 ומתרחשת ב- x = 3.
איך למצוא את ערכי המינימום המוחלט המוחלט המוחלט של f על מרווח נתון: F (t) = t sqrt (25-t ^ 2) על [-1, 5]?
Reqd. ערכים קיצוניים הם -25 / 25 ו 25/2. אנו משתמשים בתחליף t = 5sinx, in [-1,5]. שים לב כי החלפה זו מותרת, משום שב- [-1,5] rRrr = <= t <= 5rArr = = = 5 sinx <= 5 rArr -1.5 <= sinx <= 1, כמו טווח של כיף חטא. הוא [-1,1]. כעת, F = (t) = 25 = t = 2 = 5xinxxxx = 25 / 2sin2x = 25xinxx = = 5 sinos <= 1 rArr-25/2 <= 25 / 2sin2x <= 25/2 rArr-25/2 <= f (t) <= 25/2 לכן, reqd. הגפיים הן -25/2 ו 25/2.