תשובה:
הסבר:
כדי למצוא את התקופה של הפונקציה, אנו יכולים להשתמש בעובדה כי התקופה באה לידי ביטוי
במקרה זה, יש לנו
הפונקציה f היא תקופתית. אם f (3) = -3, f (5) = 0, f (7) = 3, ואת תקופת הפונקציה של F הוא 6, אז איך אתה מוצא f (135)?
F (135) = f (3) = - 3 אם התקופה היא 6, פירוש הדבר שהפונקציה חוזרת על הערכים שלה בכל 6 יחידות. אז, f (135) = f (135-6), כי אלה שני ערכים שונים לתקופה. על ידי כך, אתה יכול לחזור עד שתמצא ערך ידוע. אז, למשל, 120 הוא 20 תקופות, וכך על ידי רכיבה על אופניים 20 פעמים אחורה יש לנו f (135) = f (135-120) = f (15) לחזור כמה תקופות שוב (כלומר 12 יחידות) יש f (15) = f (15-12) = f (3), שהוא הערך הידוע -3 למעשה, כל הדרך למעלה, יש לך f (3) = - 3 כערך ידוע f (3) ) = F (3 + 6) כי 6 היא התקופה. (3 + 6 + 6) = (f + 3 + 6 + 6) = = 3 + 6 + 6) 6 = 6 (6 + 6) = = f (135), מאז 132 = 6 * 22
התרשים של הפונקציה f (x) = (x + 2) (x + 6) מוצג למטה. איזו הצהרה על הפונקציה נכונה? הפונקציה חיובית לכל הערכים הריאליים של x כאשר x> -4. הפונקציה היא שלילית עבור כל הערכים הריאליים של x שם -6 <x <-2.
הפונקציה היא שלילית עבור כל הערכים הריאליים של x שם -6 <x <-2.
מהי תקופת הפונקציה y = -2 cos (4x-pi) -5?
Pi / 2 במשוואה סינוסואידית y = cos (bx + c) + d, המשרעת של הפונקציה תהיה שווה | a, התקופה תהיה שווה (2pi) / b, משמרת הפאזה תהיה שווה - c / b, ואת המשמרת אנכית יהיה שווה ד. אז כאשר b = 4, התקופה תהיה pi / 2 כי (2pi) / 4 = pi / 2.