מהי משוואה של הקו עם מדרון m = -8 / 3 העובר דרך (-17 / 15, 15/24)?

מהי משוואה של הקו עם מדרון m = -8 / 3 העובר דרך (-17 / 15, 15/24)?
Anonim

תשובה:

ראה תהליך פתרון בהמשך:

הסבר:

אנו יכולים להשתמש בנוסחת נקודת המדרון כדי לכתוב משוואה עבור שורה זו. נוסחת נקודת השיפוע קובעת: # (y - color (אדום) (y_1)) = צבע (כחול) (m) (x - color (אדום) (x_1)) #

איפה #color (כחול) (m) # הוא המדרון ו # (צבע (אדום) (x_1, y_1)) # הוא נקודת הקו עובר.

החלפת המדרון והערכים מנקודה בבעיה נותנת:

# (y - color (אדום) (- 15/24)) = צבע (כחול) (- 8/3) (x - color (אדום) (- 17/15)) #

# (צבע + y (אדום) (15/24)) = צבע (כחול) (- 8/3) (x + צבע (אדום) (17/15)) #

אנחנו יכולים גם לפתור את המשוואה עבור # y # כדי להפוך אותו לצורת ליירט ליירט. צורת היריעה של השיפוע של משוואה לינארית היא: #y = color (אדום) (m) x צבע + (כחול) (b) #

איפה #color (אדום) (m) # הוא המדרון ו #color (כחול) (b) # הוא ערך y-intercept.

# / + צבע (אדום) (15/24) = (צבע (כחול) (- 8/3) xx x) + (צבע (כחול) (- 8/3) צבע xx (אדום) (17/15)) #

#y + color (אדום) (15/24) = -8 / 3x - 136/45 #

#y + color (אדום) (15/24) - 15/247 = -8 / 3x - 136/45 - 15/24 #

#y + 0 = -8 / 3x - (24/24 xx 136/45) - (45/45 xx 15/24) #

#y = -8 / 3x - (3264/1080) - (675/1080) #

#y = -8 / 3x - 3939/1080 #

#y = -8 / 3x - (3 x 1313) / (xx 360) #

# x = 13 / 3x - צבע (אדום) (ביטול (צבע (שחור) (3))) xx 1313) / (צבע (אדום) (ביטול (צבע (שחור) (3)) xx 360)

#y = -8 / 3x - 1313/360 #