איך למצוא את הפתרון הכללי 5 חטא (x) +2 cos (x) = 3?

איך למצוא את הפתרון הכללי 5 חטא (x) +2 cos (x) = 3?
Anonim

תשובה:

# rarrx = npi + (- 1) ^ n * (חטא ^ (- 1) (3 / sqrt29)) - חטא ^ (- 1) (2 / sqrt29) # # #n inZZ #

הסבר:

# rarr5sinx + 2cosx = 3 #

# (5 + 2 + 2 cosx) / (5 = 2 + 2 ^ 2)) = 3 / (sqrt (5 ^ 2 + 2 ^ 2) # #

# rarrsinx * (5 / sqrt (29)) + cosx * (2 / sqrt (29)) = 3 / sqrt29 #

תן # cosalpha = 5 / sqrt29 # לאחר מכן # sinalpha = sqrt (1-cos ^ 2alpha) = sqrt (1- (5 / sqrt29) ^ 2) = 2 / sqrt29 #

כמו כן, # אלפא = cos ^ (- 1) (5 / sqrt29) = חטא ^ (- 1) (2 / sqrt29) #

עכשיו, נתון משוואה נתונה

# rarrsinx * cosalpha + cosx * sinalpha = 3 / sqrt29 #

#rarrsin (x + alpha) = חטא (חטא ^ (- 1) (3 / sqrt29)) #

# rarrx + sin ^ (1 -) (2 / sqrt29) = npi + (- 1) ^ n * (חטא ^ (- 1) (3 / sqrt29)) #

# rarrx = npi + (- 1) ^ n * (חטא ^ (- 1) (3 / sqrt29)) - חטא ^ (- 1) (2 / sqrt29) # # #n inZZ #

תשובה:

#x = 12 ^ @ 12 + k360 ^ @ #

#x = 124 ^ @ 28 + k360 ^ @ #

הסבר:

5 x x x 2cos x = 3.

מחלקים את שני הצדדים ב 5.

#sin x + 2/5 cos x = 3/5 = 0.6 # (1)

התקשר #tan t = sin t / (cos t) = 2/5 # --> #t = 21 ^ @ 80 # -> cos t = 0.93.

המשוואה (1) הופכת ל:

#sin x.cos t + sin t.cos x = 0.6 (0.93) #

#sin (x + t) = חטא (x + 21.80) = 0.56 #

מחשבון מעגל יחידה לתת 2 פתרונות עבור (x + t) ->

א. x + 21.80 = 33.92

#x = 33.92 - 21.80 = 12 ^ @ 12 #

.ב x + 21.80 = 180 - 33.92 = 146.08

#x = 146.08 - 21.80 = 124 ^ @ 28 #

תשובות כלליות:

#x = 12 ^ @ 12 + k360 ^ @ #

#x = 124 ^ @ 28 + k360 ^ @ #

בדוק באמצעות המחשבון.

#x = 12 ^ @ 12 # -> 5sin x = 1.05 -> 2cos x = 1.95

5 xin x 2cos x = 1.05 + 1.95 = 3. הוכח.

#x = 124 ^ @ 28 # -> 5sin x = 4.13 -> 2cos x = -1.13

5 xin x 2cos x = 4.13 - 1.13 = 3. הוכח.